Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=(3y+x^2y)/(x-4xy)
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.1.4
Умножим на .
Этап 1.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Возведем в степень .
Этап 1.2.2
Вынесем множитель из .
Этап 1.2.3
Вынесем множитель из .
Этап 1.2.4
Вынесем множитель из .
Этап 1.2.5
Умножим на .
Этап 1.3
Перегруппируем множители.
Этап 1.4
Умножим обе части на .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Умножим на .
Этап 1.5.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.5.2.1
Вынесем множитель из .
Этап 1.5.2.2
Сократим общий множитель.
Этап 1.5.2.3
Перепишем это выражение.
Этап 1.5.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.5.3.1
Сократим общий множитель.
Этап 1.5.3.2
Перепишем это выражение.
Этап 1.6
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разделим дробь на несколько дробей.
Этап 2.2.2
Разделим данный интеграл на несколько интегралов.
Этап 2.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Сократим общий множитель.
Этап 2.2.3.2
Разделим на .
Этап 2.2.4
Интеграл по имеет вид .
Этап 2.2.5
Применим правило дифференцирования постоянных функций.
Этап 2.2.6
Упростим.
Этап 2.2.7
Изменим порядок членов.
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим дробь на несколько дробей.
Этап 2.3.2
Разделим данный интеграл на несколько интегралов.
Этап 2.3.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Вынесем множитель из .
Этап 2.3.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.3.3.2.1
Возведем в степень .
Этап 2.3.3.2.2
Вынесем множитель из .
Этап 2.3.3.2.3
Сократим общий множитель.
Этап 2.3.3.2.4
Перепишем это выражение.
Этап 2.3.3.2.5
Разделим на .
Этап 2.3.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
Интеграл по имеет вид .
Этап 2.3.6
По правилу степени интеграл по имеет вид .
Этап 2.3.7
Упростим.
Этап 2.3.8
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .