Математический анализ Примеры

Решите Дифференциальное Уравнение 2 квадратный корень из y(dy)/(dx)-3x=0
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Добавим к обеим частям уравнения.
Этап 1.1.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Разделим каждый член на .
Этап 1.1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.1.1
Сократим общий множитель.
Этап 1.1.2.2.1.2
Перепишем это выражение.
Этап 1.1.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.2.1
Сократим общий множитель.
Этап 1.1.2.2.2.2
Разделим на .
Этап 1.1.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Умножим на .
Этап 1.1.2.3.2
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.2.1
Умножим на .
Этап 1.1.2.3.2.2
Перенесем .
Этап 1.1.2.3.2.3
Возведем в степень .
Этап 1.1.2.3.2.4
Возведем в степень .
Этап 1.1.2.3.2.5
Применим правило степени для объединения показателей.
Этап 1.1.2.3.2.6
Добавим и .
Этап 1.1.2.3.2.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.2.7.1
С помощью запишем в виде .
Этап 1.1.2.3.2.7.2
Применим правило степени и перемножим показатели, .
Этап 1.1.2.3.2.7.3
Объединим и .
Этап 1.1.2.3.2.7.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.2.7.4.1
Сократим общий множитель.
Этап 1.1.2.3.2.7.4.2
Перепишем это выражение.
Этап 1.1.2.3.2.7.5
Упростим.
Этап 1.2
Перегруппируем множители.
Этап 1.3
Умножим обе части на .
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Умножим на .
Этап 1.4.2
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Умножим на .
Этап 1.4.2.2
Возведем в степень .
Этап 1.4.2.3
Возведем в степень .
Этап 1.4.2.4
Применим правило степени для объединения показателей.
Этап 1.4.2.5
Добавим и .
Этап 1.4.2.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 1.4.2.6.1
С помощью запишем в виде .
Этап 1.4.2.6.2
Применим правило степени и перемножим показатели, .
Этап 1.4.2.6.3
Объединим и .
Этап 1.4.2.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.2.6.4.1
Сократим общий множитель.
Этап 1.4.2.6.4.2
Перепишем это выражение.
Этап 1.4.2.6.5
Упростим.
Этап 1.4.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.3.1
Сократим общий множитель.
Этап 1.4.3.2
Разделим на .
Этап 1.4.4
Умножим на .
Этап 1.4.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.4.5.1
Объединим и .
Этап 1.4.5.2
Возведем в степень .
Этап 1.4.5.3
Возведем в степень .
Этап 1.4.5.4
Применим правило степени для объединения показателей.
Этап 1.4.5.5
Добавим и .
Этап 1.4.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 1.4.6.1
С помощью запишем в виде .
Этап 1.4.6.2
Применим правило степени и перемножим показатели, .
Этап 1.4.6.3
Объединим и .
Этап 1.4.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.6.4.1
Сократим общий множитель.
Этап 1.4.6.4.2
Перепишем это выражение.
Этап 1.4.6.5
Упростим.
Этап 1.4.7
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.7.1
Сократим общий множитель.
Этап 1.4.7.2
Перепишем это выражение.
Этап 1.5
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
С помощью запишем в виде .
Этап 2.2.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Перенесем в числитель, используя правило отрицательных степеней .
Этап 2.2.1.2.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.2.1
Умножим на .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.2.1.1
Возведем в степень .
Этап 2.2.1.2.2.1.2
Применим правило степени для объединения показателей.
Этап 2.2.1.2.2.2
Запишем в виде дроби с общим знаменателем.
Этап 2.2.1.2.2.3
Объединим числители над общим знаменателем.
Этап 2.2.1.2.2.4
Вычтем из .
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
По правилу степени интеграл по имеет вид .
Этап 2.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Перепишем в виде .
Этап 2.3.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.2.1
Умножим на .
Этап 2.3.3.2.2
Умножим на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Объединим и .
Этап 3.2.1.1.2
Объединим.
Этап 3.2.1.1.3
Сократим общий множитель.
Этап 3.2.1.1.4
Перепишем это выражение.
Этап 3.2.1.1.5
Сократим общий множитель.
Этап 3.2.1.1.6
Разделим на .
Этап 3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1.1
Объединим и .
Этап 3.2.2.1.1.2
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.3
Объединим.
Этап 3.2.2.1.1.4
Объединим и .
Этап 3.2.2.1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.2.1
Умножим на .
Этап 3.2.2.1.2.2
Умножим на .
Этап 3.2.2.1.2.3
Возведем в степень .
Этап 3.3
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 3.4
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.4.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1.2.1
Сократим общий множитель.
Этап 3.4.1.1.2.2
Перепишем это выражение.
Этап 3.4.1.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1.3.1
Сократим общий множитель.
Этап 3.4.1.1.3.2
Перепишем это выражение.
Этап 3.4.1.2
Упростим.
Этап 4
Упростим постоянную интегрирования.