Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Умножим обе части на .
Этап 1.2
Упростим.
Этап 1.2.1
Упростим числитель.
Этап 1.2.1.1
Перепишем в виде .
Этап 1.2.1.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.2.2
Сократим общий множитель .
Этап 1.2.2.1
Сократим общий множитель.
Этап 1.2.2.2
Перепишем это выражение.
Этап 1.2.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.2.3.1
Применим свойство дистрибутивности.
Этап 1.2.3.2
Применим свойство дистрибутивности.
Этап 1.2.3.3
Применим свойство дистрибутивности.
Этап 1.2.4
Упростим и объединим подобные члены.
Этап 1.2.4.1
Упростим каждый член.
Этап 1.2.4.1.1
Умножим на .
Этап 1.2.4.1.2
Перенесем влево от .
Этап 1.2.4.1.3
Перепишем в виде .
Этап 1.2.4.1.4
Умножим на .
Этап 1.2.4.1.5
Умножим на .
Этап 1.2.4.2
Добавим и .
Этап 1.2.4.3
Добавим и .
Этап 1.3
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Разделим данный интеграл на несколько интегралов.
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Применим правило дифференцирования постоянных функций.
Этап 2.2.4
Упростим.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
По правилу степени интеграл по имеет вид .
Этап 2.3.3
Применим правило дифференцирования постоянных функций.
Этап 2.3.4
Упростим.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .