Математический анализ Примеры

Решите Дифференциальное Уравнение 2x^2(yd)x=(3x^3+y^3)dy
Этап 1
Перепишем дифференциальное уравнение в виде, подходящем для применения метода решения уравнения в полных дифференциалах.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 2
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем по .
Этап 2.2
Поскольку является константой относительно , производная по равна .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Умножим на .
Этап 3
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем по .
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
По правилу суммы производная по имеет вид .
Этап 3.4
Поскольку является константой относительно , производная по равна .
Этап 3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.6
Умножим на .
Этап 3.7
Поскольку является константой относительно , производная относительно равна .
Этап 3.8
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.8.1
Добавим и .
Этап 3.8.2
Умножим на .
Этап 4
Проверим, что .
Нажмите для увеличения количества этапов...
Этап 4.1
Подставим вместо , а вместо .
Этап 4.2
Так как левая часть не равна правой, уравнение не является тождеством.
не является тождеством.
не является тождеством.
Этап 5
Найдем коэффициент интегрирования .
Нажмите для увеличения количества этапов...
Этап 5.1
Подставим вместо .
Этап 5.2
Подставим вместо .
Этап 5.3
Подставим вместо .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Подставим вместо .
Этап 5.3.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1
Вынесем множитель из .
Этап 5.3.2.1.2
Вынесем множитель из .
Этап 5.3.2.1.3
Вынесем множитель из .
Этап 5.3.2.2
Умножим на .
Этап 5.3.2.3
Вычтем из .
Этап 5.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Сократим общий множитель.
Этап 5.3.3.2
Перепишем это выражение.
Этап 5.3.4
Подставим вместо .
Этап 5.4
Найдем коэффициент интегрирования .
Этап 6
Найдем интеграл .
Нажмите для увеличения количества этапов...
Этап 6.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6.2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6.3
Интеграл по имеет вид .
Этап 6.4
Упростим.
Этап 6.5
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.5.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.5.1.1
Изменим порядок и .
Этап 6.5.1.2
Упростим путем переноса под логарифм.
Этап 6.5.2
Упростим путем переноса под логарифм.
Этап 6.5.3
Экспонента и логарифм являются обратными функциями.
Этап 6.5.4
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 6.5.4.1
Применим правило степени и перемножим показатели, .
Этап 6.5.4.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.5.4.2.1
Объединим и .
Этап 6.5.4.2.2
Умножим на .
Этап 6.5.4.3
Вынесем знак минуса перед дробью.
Этап 6.5.5
Перепишем выражение, используя правило отрицательных степеней .
Этап 7
Умножим обе стороны на коэффициент интегрирования .
Нажмите для увеличения количества этапов...
Этап 7.1
Умножим на .
Этап 7.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Объединим и .
Этап 7.2.2
Объединим и .
Этап 7.2.3
Объединим и .
Этап 7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 7.4
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 7.4.1
Применим правило степени для объединения показателей.
Этап 7.4.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.4.3
Объединим и .
Этап 7.4.4
Объединим числители над общим знаменателем.
Этап 7.4.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.4.5.1
Умножим на .
Этап 7.4.5.2
Вычтем из .
Этап 7.5
Перенесем влево от .
Этап 7.6
Умножим на .
Этап 7.7
Применим свойство дистрибутивности.
Этап 7.8
Умножим на .
Этап 7.9
Умножим на .
Этап 7.10
Вынесем множитель из .
Этап 7.11
Вынесем множитель из .
Этап 7.12
Вынесем множитель из .
Этап 7.13
Перепишем в виде .
Этап 7.14
Вынесем знак минуса перед дробью.
Этап 8
Приравняем к интегралу .
Этап 9
Проинтегрируем , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 9.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9.2
По правилу степени интеграл по имеет вид .
Этап 9.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 9.3.1
Перепишем в виде .
Этап 9.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.3.2.1
Умножим на .
Этап 9.3.2.2
Перенесем влево от .
Этап 9.3.2.3
Умножим на .
Этап 9.3.2.4
Объединим и .
Этап 10
Так как интеграл будет содержать постоянную интегрирования, мы можем заменить на .
Этап 11
Зададим .
Этап 12
Найдем .
Нажмите для увеличения количества этапов...
Этап 12.1
Продифференцируем по .
Этап 12.2
По правилу суммы производная по имеет вид .
Этап 12.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 12.3.1
Поскольку является константой относительно , производная по равна .
Этап 12.3.2
Перепишем в виде .
Этап 12.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 12.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 12.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 12.3.3.3
Заменим все вхождения на .
Этап 12.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 12.3.5
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 12.3.5.1
Применим правило степени и перемножим показатели, .
Этап 12.3.5.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 12.3.5.2.1
Вынесем множитель из .
Этап 12.3.5.2.2
Сократим общий множитель.
Этап 12.3.5.2.3
Перепишем это выражение.
Этап 12.3.5.3
Умножим на .
Этап 12.3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 12.3.7
Объединим и .
Этап 12.3.8
Объединим числители над общим знаменателем.
Этап 12.3.9
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 12.3.9.1
Умножим на .
Этап 12.3.9.2
Вычтем из .
Этап 12.3.10
Объединим и .
Этап 12.3.11
Объединим и .
Этап 12.3.12
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 12.3.12.1
Перенесем .
Этап 12.3.12.2
Применим правило степени для объединения показателей.
Этап 12.3.12.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 12.3.12.4
Объединим и .
Этап 12.3.12.5
Объединим числители над общим знаменателем.
Этап 12.3.12.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 12.3.12.6.1
Умножим на .
Этап 12.3.12.6.2
Добавим и .
Этап 12.3.12.7
Вынесем знак минуса перед дробью.
Этап 12.3.13
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 12.3.14
Умножим на .
Этап 12.3.15
Умножим на .
Этап 12.3.16
Умножим на .
Этап 12.3.17
Вынесем множитель из .
Этап 12.3.18
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 12.3.18.1
Вынесем множитель из .
Этап 12.3.18.2
Сократим общий множитель.
Этап 12.3.18.3
Перепишем это выражение.
Этап 12.4
Продифференцируем, используя правило функции, которое гласит, что производная от равна .
Этап 12.5
Изменим порядок членов.
Этап 13
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 13.1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 13.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 13.1.1.1
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 13.1.1.1.1
Объединим числители над общим знаменателем.
Этап 13.1.1.1.2
Добавим и .
Этап 13.1.1.1.3
Добавим и .
Этап 13.1.1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 13.1.1.2.1
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 13.1.1.2.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 13.1.1.2.2.1
Применим правило степени для объединения показателей.
Этап 13.1.1.2.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 13.1.1.2.2.3
Объединим и .
Этап 13.1.1.2.2.4
Объединим числители над общим знаменателем.
Этап 13.1.1.2.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 13.1.1.2.2.5.1
Умножим на .
Этап 13.1.1.2.2.5.2
Вычтем из .
Этап 13.1.2
Вычтем из обеих частей уравнения.
Этап 14
Найдем первообразную , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 14.1
Проинтегрируем обе части .
Этап 14.2
Найдем значение .
Этап 14.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 14.4
Вынесем из знаменателя, возведя в степень.
Этап 14.5
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 14.5.1
Применим правило степени и перемножим показатели, .
Этап 14.5.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 14.5.2.1
Объединим и .
Этап 14.5.2.2
Умножим на .
Этап 14.5.3
Вынесем знак минуса перед дробью.
Этап 14.6
По правилу степени интеграл по имеет вид .
Этап 14.7
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 14.7.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 14.7.1.1
Объединим и .
Этап 14.7.1.2
Перенесем влево от .
Этап 14.7.1.3
Умножим на .
Этап 14.7.1.4
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 14.7.2
Упростим.
Этап 14.7.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 14.7.3.1
Умножим на .
Этап 14.7.3.2
Умножим на .
Этап 15
Подставим выражение для в .