Математический анализ Примеры

Решите Дифференциальное Уравнение e^x(y-1)dx+2(e^x+4)dy=0
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Умножим обе части на .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2
Объединим и .
Этап 3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Сократим общий множитель.
Этап 3.3.2
Перепишем это выражение.
Этап 3.4
Перепишем, используя свойство коммутативности умножения.
Этап 3.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.5.2
Вынесем множитель из .
Этап 3.5.3
Вынесем множитель из .
Этап 3.5.4
Сократим общий множитель.
Этап 3.5.5
Перепишем это выражение.
Этап 3.6
Объединим и .
Этап 3.7
Вынесем знак минуса перед дробью.
Этап 4
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 4.1
Зададим интеграл на каждой стороне.
Этап 4.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.2.2
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Дифференцируем .
Этап 4.2.2.1.2
По правилу суммы производная по имеет вид .
Этап 4.2.2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2.2.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 4.2.2.1.5
Добавим и .
Этап 4.2.2.2
Переформулируем задачу с помощью и .
Этап 4.2.3
Интеграл по имеет вид .
Этап 4.2.4
Упростим.
Этап 4.2.5
Заменим все вхождения на .
Этап 4.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.1
Дифференцируем .
Этап 4.3.2.1.2
По правилу суммы производная по имеет вид .
Этап 4.3.2.1.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4.3.2.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.3.2.1.4.2
Добавим и .
Этап 4.3.2.2
Переформулируем задачу с помощью и .
Этап 4.3.3
Интеграл по имеет вид .
Этап 4.3.4
Упростим.
Этап 4.3.5
Заменим все вхождения на .
Этап 4.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 5.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1.1
Упростим путем переноса под логарифм.
Этап 5.2.1.1.2
Уберем знак модуля в , поскольку любое число в четной степени всегда положительное.
Этап 5.2.1.2
Используем свойства произведения логарифмов: .
Этап 5.2.1.3
Изменим порядок множителей в .
Этап 5.3
Развернем .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Перепишем в виде .
Этап 5.3.2
Развернем , вынося из логарифма.
Этап 5.4
Развернутое уравнение: .
Этап 5.5
Вычтем из обеих частей уравнения.
Этап 5.6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.6.1
Разделим каждый член на .
Этап 5.6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.6.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.6.2.1.1
Сократим общий множитель.
Этап 5.6.2.1.2
Разделим на .
Этап 5.6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1
Вынесем знак минуса перед дробью.
Этап 5.7
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 5.8
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 5.9
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.9.1
Перепишем уравнение в виде .
Этап 5.9.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.9.2.1
Перепишем.
Этап 5.9.2.2
Упростим путем добавления нулей.
Этап 5.9.2.3
Объединим числители над общим знаменателем.
Этап 5.9.3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.9.3.1
Добавим к обеим частям уравнения.
Этап 5.9.3.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.9.3.2.1
Разобьем дробь на две дроби.
Этап 5.9.3.2.2
Вынесем знак минуса перед дробью.
Этап 6
Сгруппируем постоянные члены.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим постоянную интегрирования.
Этап 6.2
Изменим порядок членов.
Этап 6.3
Перепишем в виде .
Этап 6.4
Изменим порядок и .