Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Решим относительно .
Этап 1.1.1
Перенесем все члены без в правую часть уравнения.
Этап 1.1.1.1
Вычтем из обеих частей уравнения.
Этап 1.1.1.2
Вычтем из обеих частей уравнения.
Этап 1.1.1.3
Вычтем из обеих частей уравнения.
Этап 1.1.2
Разделим каждый член на и упростим.
Этап 1.1.2.1
Разделим каждый член на .
Этап 1.1.2.2
Упростим левую часть.
Этап 1.1.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.1.2.2.2
Сократим общий множитель .
Этап 1.1.2.2.2.1
Сократим общий множитель.
Этап 1.1.2.2.2.2
Разделим на .
Этап 1.1.2.3
Упростим правую часть.
Этап 1.1.2.3.1
Упростим каждый член.
Этап 1.1.2.3.1.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.1.2.3.1.2
Сократим общий множитель и .
Этап 1.1.2.3.1.2.1
Вынесем множитель из .
Этап 1.1.2.3.1.2.2
Сократим общие множители.
Этап 1.1.2.3.1.2.2.1
Вынесем множитель из .
Этап 1.1.2.3.1.2.2.2
Сократим общий множитель.
Этап 1.1.2.3.1.2.2.3
Перепишем это выражение.
Этап 1.1.2.3.1.3
Деление двух отрицательных значений дает положительное значение.
Этап 1.1.2.3.1.4
Деление двух отрицательных значений дает положительное значение.
Этап 1.1.2.3.1.5
Сократим общий множитель .
Этап 1.1.2.3.1.5.1
Сократим общий множитель.
Этап 1.1.2.3.1.5.2
Перепишем это выражение.
Этап 1.2
Перепишем в виде .
Этап 2
Пусть . Подставим вместо .
Этап 3
Решим относительно .
Этап 4
Применим правило умножения, чтобы найти производную по .
Этап 5
Подставим вместо .
Этап 6
Этап 6.1
Разделим переменные.
Этап 6.1.1
Решим относительно .
Этап 6.1.1.1
Перенесем все члены без в правую часть уравнения.
Этап 6.1.1.1.1
Вычтем из обеих частей уравнения.
Этап 6.1.1.1.2
Объединим противоположные члены в .
Этап 6.1.1.1.2.1
Вычтем из .
Этап 6.1.1.1.2.2
Добавим и .
Этап 6.1.1.2
Разделим каждый член на и упростим.
Этап 6.1.1.2.1
Разделим каждый член на .
Этап 6.1.1.2.2
Упростим левую часть.
Этап 6.1.1.2.2.1
Сократим общий множитель .
Этап 6.1.1.2.2.1.1
Сократим общий множитель.
Этап 6.1.1.2.2.1.2
Разделим на .
Этап 6.1.2
Объединим числители над общим знаменателем.
Этап 6.1.3
Умножим обе части на .
Этап 6.1.4
Сократим общий множитель .
Этап 6.1.4.1
Сократим общий множитель.
Этап 6.1.4.2
Перепишем это выражение.
Этап 6.1.5
Перепишем уравнение.
Этап 6.2
Проинтегрируем обе части.
Этап 6.2.1
Зададим интеграл на каждой стороне.
Этап 6.2.2
Проинтегрируем левую часть.
Этап 6.2.2.1
Упростим выражение.
Этап 6.2.2.1.1
Изменим порядок и .
Этап 6.2.2.1.2
Перепишем в виде .
Этап 6.2.2.2
Интеграл по имеет вид .
Этап 6.2.3
Интеграл по имеет вид .
Этап 6.2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 6.3
Возьмем обратную арктангенса обеих частей уравнения, чтобы извлечь из арктангенса.
Этап 7
Подставим вместо .
Этап 8
Этап 8.1
Умножим обе части на .
Этап 8.2
Упростим.
Этап 8.2.1
Упростим левую часть.
Этап 8.2.1.1
Сократим общий множитель .
Этап 8.2.1.1.1
Сократим общий множитель.
Этап 8.2.1.1.2
Перепишем это выражение.
Этап 8.2.2
Упростим правую часть.
Этап 8.2.2.1
Изменим порядок множителей в .