Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Продифференцируем по .
Этап 1.2
По правилу суммы производная по имеет вид .
Этап 1.3
Найдем значение .
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Продифференцируем, используя правило константы.
Этап 1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.4.2
Добавим и .
Этап 2
Этап 2.1
Продифференцируем по .
Этап 2.2
По правилу суммы производная по имеет вид .
Этап 2.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5
Добавим и .
Этап 3
Этап 3.1
Подставим вместо , а вместо .
Этап 3.2
Так как обе части демонстрируют эквивалентность, уравнение является тождеством.
является тождеством.
является тождеством.
Этап 4
Приравняем к интегралу .
Этап 5
Этап 5.1
Разделим данный интеграл на несколько интегралов.
Этап 5.2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.3
По правилу степени интеграл по имеет вид .
Этап 5.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.5
По правилу степени интеграл по имеет вид .
Этап 5.6
Упростим.
Этап 5.7
Упростим.
Этап 5.7.1
Объединим и .
Этап 5.7.2
Сократим общий множитель .
Этап 5.7.2.1
Сократим общий множитель.
Этап 5.7.2.2
Перепишем это выражение.
Этап 5.7.3
Умножим на .
Этап 5.7.4
Объединим и .
Этап 5.7.5
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.7.6
Объединим и .
Этап 5.7.7
Объединим числители над общим знаменателем.
Этап 5.7.8
Перенесем влево от .
Этап 5.7.9
Избавимся от скобок.
Этап 5.8
Изменим порядок членов.
Этап 6
Так как интеграл будет содержать постоянную интегрирования, мы можем заменить на .
Этап 7
Зададим .
Этап 8
Этап 8.1
Продифференцируем по .
Этап 8.2
По правилу суммы производная по имеет вид .
Этап 8.3
Найдем значение .
Этап 8.3.1
Поскольку является константой относительно , производная по равна .
Этап 8.3.2
По правилу суммы производная по имеет вид .
Этап 8.3.3
Поскольку является константой относительно , производная по равна .
Этап 8.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 8.3.6
Умножим на .
Этап 8.3.7
Добавим и .
Этап 8.3.8
Объединим и .
Этап 8.3.9
Объединим и .
Этап 8.3.10
Сократим общий множитель .
Этап 8.3.10.1
Сократим общий множитель.
Этап 8.3.10.2
Разделим на .
Этап 8.4
Продифференцируем, используя правило функции, которое гласит, что производная от равна .
Этап 8.5
Изменим порядок членов.
Этап 9
Этап 9.1
Перенесем все члены без в правую часть уравнения.
Этап 9.1.1
Вычтем из обеих частей уравнения.
Этап 9.1.2
Объединим противоположные члены в .
Этап 9.1.2.1
Вычтем из .
Этап 9.1.2.2
Добавим и .
Этап 10
Этап 10.1
Проинтегрируем обе части .
Этап 10.2
Найдем значение .
Этап 10.3
По правилу степени интеграл по имеет вид .
Этап 11
Подставим выражение для в .
Этап 12
Этап 12.1
Упростим каждый член.
Этап 12.1.1
Применим свойство дистрибутивности.
Этап 12.1.2
Сократим общий множитель .
Этап 12.1.2.1
Вынесем множитель из .
Этап 12.1.2.2
Сократим общий множитель.
Этап 12.1.2.3
Перепишем это выражение.
Этап 12.1.3
Объединим и .
Этап 12.1.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 12.1.5
Объединим и .
Этап 12.1.6
Объединим числители над общим знаменателем.
Этап 12.1.7
Упростим числитель.
Этап 12.1.7.1
Вынесем множитель из .
Этап 12.1.7.1.1
Вынесем множитель из .
Этап 12.1.7.1.2
Вынесем множитель из .
Этап 12.1.7.1.3
Вынесем множитель из .
Этап 12.1.7.2
Перенесем влево от .
Этап 12.1.8
Объединим и .
Этап 12.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 12.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 12.4
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 12.4.1
Умножим на .
Этап 12.4.2
Умножим на .
Этап 12.4.3
Умножим на .
Этап 12.4.4
Умножим на .
Этап 12.5
Объединим числители над общим знаменателем.
Этап 12.6
Упростим числитель.
Этап 12.6.1
Применим свойство дистрибутивности.
Этап 12.6.2
Перепишем, используя свойство коммутативности умножения.
Этап 12.6.3
Перенесем влево от .
Этап 12.6.4
Перепишем в виде .
Этап 12.6.5
Применим свойство дистрибутивности.
Этап 12.6.6
Умножим на .
Этап 12.6.7
Умножим на .
Этап 12.6.8
Перенесем влево от .