Математический анализ Примеры

Решите Дифференциальное Уравнение (4+x^6)(dy)/(dx)=(x^5)/y
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Разделим каждый член на .
Этап 1.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Сократим общий множитель.
Этап 1.1.2.1.2
Разделим на .
Этап 1.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.1.3.2
Умножим на .
Этап 1.2
Перегруппируем множители.
Этап 1.3
Умножим обе части на .
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Умножим на .
Этап 1.4.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Вынесем множитель из .
Этап 1.4.2.2
Сократим общий множитель.
Этап 1.4.2.3
Перепишем это выражение.
Этап 1.5
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
По правилу степени интеграл по имеет вид .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Перепишем в виде .
Этап 2.3.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Дифференцируем .
Этап 2.3.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.2.2
Переформулируем задачу с помощью и .
Этап 2.3.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Упростим.
Этап 2.3.3.2
Умножим на .
Этап 2.3.3.3
Перенесем влево от .
Этап 2.3.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.1
Дифференцируем .
Этап 2.3.5.1.2
По правилу суммы производная по имеет вид .
Этап 2.3.5.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.5.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5.1.5
Добавим и .
Этап 2.3.5.2
Переформулируем задачу с помощью и .
Этап 2.3.6
Интеграл по имеет вид .
Этап 2.3.7
Упростим.
Этап 2.3.8
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 2.3.8.1
Заменим все вхождения на .
Этап 2.3.8.2
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Объединим и .
Этап 3.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Объединим и .
Этап 3.2.2.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.2.2.1.3
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.3.1
Объединим и .
Этап 3.2.2.1.3.2
Объединим числители над общим знаменателем.
Этап 3.2.2.1.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.3.3.1
Вынесем множитель из .
Этап 3.2.2.1.3.3.2
Сократим общий множитель.
Этап 3.2.2.1.3.3.3
Перепишем это выражение.
Этап 3.2.2.1.4
Перенесем влево от .
Этап 3.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Перепишем в виде .
Этап 3.4.2
Умножим на .
Этап 3.4.3
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 3.4.3.1
Умножим на .
Этап 3.4.3.2
Возведем в степень .
Этап 3.4.3.3
Возведем в степень .
Этап 3.4.3.4
Применим правило степени для объединения показателей.
Этап 3.4.3.5
Добавим и .
Этап 3.4.3.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.4.3.6.1
С помощью запишем в виде .
Этап 3.4.3.6.2
Применим правило степени и перемножим показатели, .
Этап 3.4.3.6.3
Объединим и .
Этап 3.4.3.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.3.6.4.1
Сократим общий множитель.
Этап 3.4.3.6.4.2
Перепишем это выражение.
Этап 3.4.3.6.5
Найдем экспоненту.
Этап 3.4.4
Объединим, используя правило умножения для радикалов.
Этап 3.4.5
Изменим порядок множителей в .
Этап 3.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Упростим постоянную интегрирования.