Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Умножим обе части на .
Этап 1.2
Упростим.
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.1.1
Возведем в степень .
Этап 1.2.1.2
Вынесем множитель из .
Этап 1.2.1.3
Вынесем множитель из .
Этап 1.2.1.4
Вынесем множитель из .
Этап 1.2.2
Умножим на .
Этап 1.2.3
Вынесем множитель из .
Этап 1.2.3.1
Возведем в степень .
Этап 1.2.3.2
Вынесем множитель из .
Этап 1.2.3.3
Вынесем множитель из .
Этап 1.2.3.4
Вынесем множитель из .
Этап 1.2.4
Сократим общий множитель .
Этап 1.2.4.1
Сократим общий множитель.
Этап 1.2.4.2
Перепишем это выражение.
Этап 1.2.5
Сократим общий множитель .
Этап 1.2.5.1
Сократим общий множитель.
Этап 1.2.5.2
Разделим на .
Этап 1.3
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Разделим данный интеграл на несколько интегралов.
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.2.3.1
Пусть . Найдем .
Этап 2.2.3.1.1
Дифференцируем .
Этап 2.2.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3.2
Переформулируем задачу с помощью и .
Этап 2.2.4
Объединим и .
Этап 2.2.5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.6
Интеграл по имеет вид .
Этап 2.2.7
Упростим.
Этап 2.2.8
Заменим все вхождения на .
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
Применим правило дифференцирования постоянных функций.
Этап 2.3.3
Проинтегрируем по частям, используя формулу , где и .
Этап 2.3.4
Интеграл по имеет вид .
Этап 2.3.5
Упростим.
Этап 2.3.6
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .