Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=(1+xe^x)/(y+ye^(y^2))
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Возведем в степень .
Этап 1.2.1.2
Вынесем множитель из .
Этап 1.2.1.3
Вынесем множитель из .
Этап 1.2.1.4
Вынесем множитель из .
Этап 1.2.2
Умножим на .
Этап 1.2.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Возведем в степень .
Этап 1.2.3.2
Вынесем множитель из .
Этап 1.2.3.3
Вынесем множитель из .
Этап 1.2.3.4
Вынесем множитель из .
Этап 1.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Сократим общий множитель.
Этап 1.2.4.2
Перепишем это выражение.
Этап 1.2.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Сократим общий множитель.
Этап 1.2.5.2
Разделим на .
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разделим данный интеграл на несколько интегралов.
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.2.3.1.1
Дифференцируем .
Этап 2.2.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3.2
Переформулируем задачу с помощью и .
Этап 2.2.4
Объединим и .
Этап 2.2.5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.6
Интеграл по имеет вид .
Этап 2.2.7
Упростим.
Этап 2.2.8
Заменим все вхождения на .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
Применим правило дифференцирования постоянных функций.
Этап 2.3.3
Проинтегрируем по частям, используя формулу , где и .
Этап 2.3.4
Интеграл по имеет вид .
Этап 2.3.5
Упростим.
Этап 2.3.6
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .