Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Решим относительно .
Этап 1.1.1
Вычтем из обеих частей уравнения.
Этап 1.1.2
Перенесем все члены без в правую часть уравнения.
Этап 1.1.2.1
Добавим к обеим частям уравнения.
Этап 1.1.2.2
Добавим к обеим частям уравнения.
Этап 1.1.3
Разделим каждый член на и упростим.
Этап 1.1.3.1
Разделим каждый член на .
Этап 1.1.3.2
Упростим левую часть.
Этап 1.1.3.2.1
Сократим общий множитель .
Этап 1.1.3.2.1.1
Сократим общий множитель.
Этап 1.1.3.2.1.2
Разделим на .
Этап 1.1.3.3
Упростим правую часть.
Этап 1.1.3.3.1
Упростим каждый член.
Этап 1.1.3.3.1.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.1.3.3.1.2
Умножим на .
Этап 1.1.3.3.1.3
Перенесем влево от .
Этап 1.1.3.3.1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.1.3.3.1.5
Сократим общий множитель .
Этап 1.1.3.3.1.5.1
Вынесем множитель из .
Этап 1.1.3.3.1.5.2
Сократим общий множитель.
Этап 1.1.3.3.1.5.3
Перепишем это выражение.
Этап 1.2
Разложим на множители.
Этап 1.2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.2
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 1.2.2.1
Умножим на .
Этап 1.2.2.2
Изменим порядок множителей в .
Этап 1.2.3
Объединим числители над общим знаменателем.
Этап 1.2.4
Перенесем влево от .
Этап 1.3
Умножим обе части на .
Этап 1.4
Сократим общий множитель .
Этап 1.4.1
Вынесем множитель из .
Этап 1.4.2
Сократим общий множитель.
Этап 1.4.3
Перепишем это выражение.
Этап 1.5
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
По правилу степени интеграл по имеет вид .
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Разделим данный интеграл на несколько интегралов.
Этап 2.3.3
Применим правило дифференцирования постоянных функций.
Этап 2.3.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
По правилу степени интеграл по имеет вид .
Этап 2.3.6
Упростим.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Этап 3.2.1
Упростим левую часть.
Этап 3.2.1.1
Упростим .
Этап 3.2.1.1.1
Объединим и .
Этап 3.2.1.1.2
Сократим общий множитель .
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.2
Упростим правую часть.
Этап 3.2.2.1
Упростим .
Этап 3.2.2.1.1
Упростим каждый член.
Этап 3.2.2.1.1.1
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.2
Объединим и .
Этап 3.2.2.1.1.3
Объединим и .
Этап 3.2.2.1.2
Применим свойство дистрибутивности.
Этап 3.2.2.1.3
Упростим.
Этап 3.2.2.1.3.1
Сократим общий множитель .
Этап 3.2.2.1.3.1.1
Сократим общий множитель.
Этап 3.2.2.1.3.1.2
Перепишем это выражение.
Этап 3.2.2.1.3.2
Сократим общий множитель .
Этап 3.2.2.1.3.2.1
Сократим общий множитель.
Этап 3.2.2.1.3.2.2
Перепишем это выражение.
Этап 3.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Упростим постоянную интегрирования.