Введите задачу...
Математический анализ Примеры
,
Этап 1
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.3
Интеграл по имеет вид .
Этап 2.3.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
По правилу степени интеграл по имеет вид .
Этап 2.3.6
Упростим.
Этап 2.3.6.1
Упростим.
Этап 2.3.6.2
Упростим.
Этап 2.3.6.2.1
Объединим и .
Этап 2.3.6.2.2
Вынесем знак минуса перед дробью.
Этап 2.3.7
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Используем начальное условие, чтобы найти значение , подставив вместо и вместо в .
Этап 4
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Упростим .
Этап 4.2.1
Упростим каждый член.
Этап 4.2.1.1
Возведение в любую положительную степень дает .
Этап 4.2.1.2
Умножим .
Этап 4.2.1.2.1
Умножим на .
Этап 4.2.1.2.2
Умножим на .
Этап 4.2.1.3
Любое число в степени равно .
Этап 4.2.1.4
Умножим на .
Этап 4.2.2
Вычтем из .
Этап 4.3
Перенесем все члены без в правую часть уравнения.
Этап 4.3.1
Добавим к обеим частям уравнения.
Этап 4.3.2
Добавим и .
Этап 5
Этап 5.1
Подставим вместо .
Этап 5.2
Упростим каждый член.
Этап 5.2.1
Объединим и .
Этап 5.2.2
Перенесем влево от .