Математический анализ Примеры

Решите Дифференциальное Уравнение 8y(dy)/(dx)=12/((3x+2)^2)
Этап 1
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Перепишем в виде .
Этап 2.2.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.3.2.1
Объединим и .
Этап 2.2.3.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.2.3.2.2.1
Вынесем множитель из .
Этап 2.2.3.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.2.3.2.2.2.1
Вынесем множитель из .
Этап 2.2.3.2.2.2.2
Сократим общий множитель.
Этап 2.2.3.2.2.2.3
Перепишем это выражение.
Этап 2.2.3.2.2.2.4
Разделим на .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Дифференцируем .
Этап 2.3.2.1.2
По правилу суммы производная по имеет вид .
Этап 2.3.2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.2.1.3.3
Умножим на .
Этап 2.3.2.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.2.1.4.2
Добавим и .
Этап 2.3.2.2
Переформулируем задачу с помощью и .
Этап 2.3.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Умножим на .
Этап 2.3.3.2
Перенесем влево от .
Этап 2.3.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.1
Объединим и .
Этап 2.3.5.1.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.2.1
Вынесем множитель из .
Этап 2.3.5.1.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.2.2.1
Вынесем множитель из .
Этап 2.3.5.1.2.2.2
Сократим общий множитель.
Этап 2.3.5.1.2.2.3
Перепишем это выражение.
Этап 2.3.5.1.2.2.4
Разделим на .
Этап 2.3.5.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.3.5.2.1
Вынесем из знаменателя, возведя в степень.
Этап 2.3.5.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.3.5.2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.3.5.2.2.2
Умножим на .
Этап 2.3.6
По правилу степени интеграл по имеет вид .
Этап 2.3.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.7.1
Перепишем в виде .
Этап 2.3.7.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.7.2.1
Умножим на .
Этап 2.3.7.2.2
Объединим и .
Этап 2.3.7.2.3
Вынесем знак минуса перед дробью.
Этап 2.3.8
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Разделим каждый член на .
Этап 3.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.2.1.1
Сократим общий множитель.
Этап 3.1.2.1.2
Разделим на .
Этап 3.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1
Объединим числители над общим знаменателем.
Этап 3.1.3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.1.3.3
Объединим числители над общим знаменателем.
Этап 3.1.3.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.1.3.4.1
Применим свойство дистрибутивности.
Этап 3.1.3.4.2
Перепишем, используя свойство коммутативности умножения.
Этап 3.1.3.4.3
Перенесем влево от .
Этап 3.1.3.5
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 3.1.3.5.1
Перепишем в виде .
Этап 3.1.3.5.2
Вынесем множитель из .
Этап 3.1.3.5.3
Вынесем множитель из .
Этап 3.1.3.5.4
Вынесем множитель из .
Этап 3.1.3.5.5
Вынесем множитель из .
Этап 3.1.3.5.6
Вынесем знак минуса перед дробью.
Этап 3.1.3.6
Умножим числитель на величину, обратную знаменателю.
Этап 3.1.3.7
Умножим на .
Этап 3.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.3
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Вынесем полную степень из .
Этап 3.3.1.2
Вынесем полную степень из .
Этап 3.3.1.3
Перегруппируем дробь .
Этап 3.3.1.4
Изменим порядок и .
Этап 3.3.1.5
Перепишем в виде .
Этап 3.3.1.6
Добавим круглые скобки.
Этап 3.3.2
Вынесем члены из-под знака корня.
Этап 3.3.3
Единица в любой степени равна единице.
Этап 3.3.4
Объединим и .
Этап 3.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Упростим постоянную интегрирования.