Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=(2x)/( квадратный корень из 2x^2-1) , y(5)=4
,
Этап 1
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Дифференцируем .
Этап 2.3.2.1.2
По правилу суммы производная по имеет вид .
Этап 2.3.2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.2.1.3.3
Умножим на .
Этап 2.3.2.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.2.1.4.2
Добавим и .
Этап 2.3.2.2
Переформулируем задачу с помощью и .
Этап 2.3.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Умножим на .
Этап 2.3.3.2
Перенесем влево от .
Этап 2.3.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.1
Объединим и .
Этап 2.3.5.1.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.2.1
Вынесем множитель из .
Этап 2.3.5.1.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.2.2.1
Вынесем множитель из .
Этап 2.3.5.1.2.2.2
Сократим общий множитель.
Этап 2.3.5.1.2.2.3
Перепишем это выражение.
Этап 2.3.5.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.3.5.2.1
С помощью запишем в виде .
Этап 2.3.5.2.2
Вынесем из знаменателя, возведя в степень.
Этап 2.3.5.2.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.3.5.2.3.1
Применим правило степени и перемножим показатели, .
Этап 2.3.5.2.3.2
Объединим и .
Этап 2.3.5.2.3.3
Вынесем знак минуса перед дробью.
Этап 2.3.6
По правилу степени интеграл по имеет вид .
Этап 2.3.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.7.1
Перепишем в виде .
Этап 2.3.7.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.7.2.1
Объединим и .
Этап 2.3.7.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.7.2.2.1
Сократим общий множитель.
Этап 2.3.7.2.2.2
Перепишем это выражение.
Этап 2.3.7.2.3
Умножим на .
Этап 2.3.8
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Используем начальное условие, чтобы найти значение , подставив вместо и вместо в .
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Возведем в степень .
Этап 4.2.1.2
Умножим на .
Этап 4.2.2
Вычтем из .
Этап 4.2.3
Перепишем в виде .
Этап 4.2.4
Применим правило степени и перемножим показатели, .
Этап 4.2.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.5.1
Сократим общий множитель.
Этап 4.2.5.2
Перепишем это выражение.
Этап 4.2.6
Найдем экспоненту.
Этап 4.3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вычтем из обеих частей уравнения.
Этап 4.3.2
Вычтем из .
Этап 5
Подставим вместо в и упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Подставим вместо .