Введите задачу...
Математический анализ Примеры
,
Этап 1
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.3.1.1
Пусть . Найдем .
Этап 2.3.1.1.1
Дифференцируем .
Этап 2.3.1.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.1.1.4
Умножим на .
Этап 2.3.1.2
Переформулируем задачу с помощью и .
Этап 2.3.2
Упростим.
Этап 2.3.2.1
Объединим и .
Этап 2.3.2.2
Объединим и .
Этап 2.3.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.3.4.1
Пусть . Найдем .
Этап 2.3.4.1.1
Дифференцируем .
Этап 2.3.4.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3.4.2
Переформулируем задачу с помощью и .
Этап 2.3.5
Интеграл по имеет вид .
Этап 2.3.6
Упростим.
Этап 2.3.7
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Этап 2.3.7.1
Заменим все вхождения на .
Этап 2.3.7.2
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Используем начальное условие, чтобы найти значение , подставив вместо и вместо в .
Этап 4
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Упростим левую часть.
Этап 4.2.1
Упростим каждый член.
Этап 4.2.1.1
Умножим на .
Этап 4.2.1.2
Любое число в степени равно .
Этап 4.2.1.3
Найдем значение .
Этап 4.2.1.4
Объединим и .
Этап 4.2.1.5
Разделим на .
Этап 4.3
Вычтем из обеих частей уравнения.
Этап 5
Этап 5.1
Подставим вместо .
Этап 5.2
Объединим и .