Введите задачу...
Математический анализ Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Умножим обе части на .
Этап 3
Этап 3.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2
Сократим общий множитель .
Этап 3.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.2
Сократим общий множитель.
Этап 3.2.3
Перепишем это выражение.
Этап 3.3
Объединим и .
Этап 3.4
Вынесем знак минуса перед дробью.
Этап 4
Этап 4.1
Зададим интеграл на каждой стороне.
Этап 4.2
Применим правило дифференцирования постоянных функций.
Этап 4.3
Проинтегрируем правую часть.
Этап 4.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.2
Пусть . Тогда . Перепишем, используя и .
Этап 4.3.2.1
Пусть . Найдем .
Этап 4.3.2.1.1
Дифференцируем .
Этап 4.3.2.1.2
По правилу суммы производная по имеет вид .
Этап 4.3.2.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.3.2.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.2.1.5
Добавим и .
Этап 4.3.2.2
Переформулируем задачу с помощью и .
Этап 4.3.3
Интеграл по имеет вид .
Этап 4.3.4
Упростим.
Этап 4.3.5
Заменим все вхождения на .
Этап 4.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 5
Этап 5.1
Разделим каждый член на .
Этап 5.2
Упростим левую часть.
Этап 5.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.2.2
Разделим на .
Этап 5.3
Упростим правую часть.
Этап 5.3.1
Упростим каждый член.
Этап 5.3.1.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.3.1.2
Разделим на .
Этап 5.3.1.3
Вынесем знак минуса из знаменателя .
Этап 5.3.1.4
Перепишем в виде .
Этап 6
Упростим постоянную интегрирования.