Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dt)=e^(-y)sin(t/3)
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Сократим общий множитель.
Этап 1.2.3
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Поменяем знак экспоненты и вынесем ее из знаменателя.
Этап 2.2.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.2.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1.2.1
Умножим на .
Этап 2.2.1.2.1.2.2
Умножим на .
Этап 2.2.1.2.2
Умножим на .
Этап 2.2.2
Интеграл по имеет вид .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1.1
Дифференцируем .
Этап 2.3.1.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.1.1.4
Умножим на .
Этап 2.3.1.2
Переформулируем задачу с помощью и .
Этап 2.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Умножим на обратную дробь, чтобы разделить на .
Этап 2.3.2.2
Умножим на .
Этап 2.3.2.3
Перенесем влево от .
Этап 2.3.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
Интеграл по имеет вид .
Этап 2.3.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Упростим.
Этап 2.3.5.2
Умножим на .
Этап 2.3.6
Заменим все вхождения на .
Этап 2.3.7
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 3.2
Развернем левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Развернем , вынося из логарифма.
Этап 3.2.2
Натуральный логарифм равен .
Этап 3.2.3
Умножим на .