Математический анализ Примеры

Решите Дифференциальное Уравнение (dN)/(dt)N=Nte^(t+2)
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Разделим каждый член на .
Этап 1.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Сократим общий множитель.
Этап 1.1.2.1.2
Разделим на .
Этап 1.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Сократим общий множитель.
Этап 1.1.3.1.2
Разделим на .
Этап 1.2
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Проинтегрируем по частям, используя формулу , где и .
Этап 2.3.2
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Дифференцируем .
Этап 2.3.2.1.2
По правилу суммы производная по имеет вид .
Этап 2.3.2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.2.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.2.1.5
Добавим и .
Этап 2.3.2.2
Переформулируем задачу с помощью и .
Этап 2.3.3
Интеграл по имеет вид .
Этап 2.3.4
Упростим.
Этап 2.3.5
Заменим все вхождения на .
Этап 2.3.6
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .