Математический анализ Примеры

Решите Дифференциальное Уравнение 2(2y^2+5xy-2y+4)dx+x(2x+2y-1)dy=0
Этап 1
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем по .
Этап 1.2
Поскольку является константой относительно , производная по равна .
Этап 1.3
По правилу суммы производная по имеет вид .
Этап 1.4
Поскольку является константой относительно , производная по равна .
Этап 1.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.6
Умножим на .
Этап 1.7
Поскольку является константой относительно , производная по равна .
Этап 1.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.9
Умножим на .
Этап 1.10
Поскольку является константой относительно , производная по равна .
Этап 1.11
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.12
Умножим на .
Этап 1.13
Поскольку является константой относительно , производная относительно равна .
Этап 1.14
Добавим и .
Этап 1.15
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.15.1
Применим свойство дистрибутивности.
Этап 1.15.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.15.2.1
Умножим на .
Этап 1.15.2.2
Умножим на .
Этап 1.15.2.3
Умножим на .
Этап 1.15.3
Изменим порядок членов.
Этап 2
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем по .
Этап 2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.3.1
По правилу суммы производная по имеет вид .
Этап 2.3.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Умножим на .
Этап 2.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.6
Добавим и .
Этап 2.3.7
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.8
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.8.1
Добавим и .
Этап 2.3.8.2
Перенесем влево от .
Этап 2.3.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.10
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 2.3.10.1
Умножим на .
Этап 2.3.10.2
Добавим и .
Этап 3
Проверим, что .
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим вместо , а вместо .
Этап 3.2
Так как левая часть не равна правой, уравнение не является тождеством.
не является тождеством.
не является тождеством.
Этап 4
Найдем коэффициент интегрирования .
Нажмите для увеличения количества этапов...
Этап 4.1
Подставим вместо .
Этап 4.2
Подставим вместо .
Этап 4.3
Подставим вместо .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Применим свойство дистрибутивности.
Этап 4.3.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.2.2.1
Умножим на .
Этап 4.3.2.2.2
Умножим на .
Этап 4.3.2.2.3
Умножим на .
Этап 4.3.2.3
Вычтем из .
Этап 4.3.2.4
Вычтем из .
Этап 4.3.2.5
Добавим и .
Этап 4.3.2.6
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.3.2.6.1
Вынесем множитель из .
Этап 4.3.2.6.2
Вынесем множитель из .
Этап 4.3.2.6.3
Вынесем множитель из .
Этап 4.3.2.6.4
Вынесем множитель из .
Этап 4.3.2.6.5
Вынесем множитель из .
Этап 4.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.3.1
Сократим общий множитель.
Этап 4.3.3.2
Перепишем это выражение.
Этап 4.4
Найдем коэффициент интегрирования .
Этап 5
Найдем интеграл .
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.2
Интеграл по имеет вид .
Этап 5.3
Упростим.
Этап 5.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Упростим путем переноса под логарифм.
Этап 5.4.2
Экспонента и логарифм являются обратными функциями.
Этап 6
Умножим обе стороны на коэффициент интегрирования .
Нажмите для увеличения количества этапов...
Этап 6.1
Умножим на .
Этап 6.2
Применим свойство дистрибутивности.
Этап 6.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Умножим на .
Этап 6.3.2
Умножим на .
Этап 6.3.3
Умножим на .
Этап 6.3.4
Умножим на .
Этап 6.4
Применим свойство дистрибутивности.
Этап 6.5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.5.1
Перенесем .
Этап 6.5.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 6.5.2.1
Возведем в степень .
Этап 6.5.2.2
Применим правило степени для объединения показателей.
Этап 6.5.3
Добавим и .
Этап 6.6
Умножим на .
Этап 6.7
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.7.1
Перенесем .
Этап 6.7.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 6.7.2.1
Возведем в степень .
Этап 6.7.2.2
Применим правило степени для объединения показателей.
Этап 6.7.3
Добавим и .
Этап 6.8
Применим свойство дистрибутивности.
Этап 6.9
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.9.1
Перепишем, используя свойство коммутативности умножения.
Этап 6.9.2
Перепишем, используя свойство коммутативности умножения.
Этап 6.9.3
Перенесем влево от .
Этап 6.10
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.10.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.10.1.1
Перенесем .
Этап 6.10.1.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 6.10.1.2.1
Возведем в степень .
Этап 6.10.1.2.2
Применим правило степени для объединения показателей.
Этап 6.10.1.3
Добавим и .
Этап 6.10.2
Перепишем в виде .
Этап 7
Приравняем к интегралу .
Этап 8
Проинтегрируем , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 8.1
Разделим данный интеграл на несколько интегралов.
Этап 8.2
Применим правило дифференцирования постоянных функций.
Этап 8.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 8.4
По правилу степени интеграл по имеет вид .
Этап 8.5
Применим правило дифференцирования постоянных функций.
Этап 8.6
Объединим и .
Этап 8.7
Упростим.
Этап 9
Так как интеграл будет содержать постоянную интегрирования, мы можем заменить на .
Этап 10
Зададим .
Этап 11
Найдем .
Нажмите для увеличения количества этапов...
Этап 11.1
Продифференцируем по .
Этап 11.2
По правилу суммы производная по имеет вид .
Этап 11.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 11.3.1
Поскольку является константой относительно , производная по равна .
Этап 11.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 11.3.3
Умножим на .
Этап 11.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 11.4.1
Поскольку является константой относительно , производная по равна .
Этап 11.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 11.4.3
Перенесем влево от .
Этап 11.5
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 11.5.1
Поскольку является константой относительно , производная по равна .
Этап 11.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 11.5.3
Умножим на .
Этап 11.6
Продифференцируем, используя правило функции, которое гласит, что производная от равна .
Этап 11.7
Изменим порядок членов.
Этап 12
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 12.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 12.1.1
Вычтем из обеих частей уравнения.
Этап 12.1.2
Вычтем из обеих частей уравнения.
Этап 12.1.3
Добавим к обеим частям уравнения.
Этап 12.1.4
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 12.1.4.1
Вычтем из .
Этап 12.1.4.2
Добавим и .
Этап 12.1.4.3
Изменим порядок множителей в членах и .
Этап 12.1.4.4
Вычтем из .
Этап 12.1.4.5
Добавим и .
Этап 12.1.4.6
Изменим порядок множителей в членах и .
Этап 12.1.4.7
Добавим и .
Этап 12.1.4.8
Добавим и .
Этап 13
Найдем первообразную , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 13.1
Проинтегрируем обе части .
Этап 13.2
Найдем значение .
Этап 13.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 13.4
По правилу степени интеграл по имеет вид .
Этап 13.5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 13.5.1
Перепишем в виде .
Этап 13.5.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 13.5.2.1
Объединим и .
Этап 13.5.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 13.5.2.2.1
Вынесем множитель из .
Этап 13.5.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 13.5.2.2.2.1
Вынесем множитель из .
Этап 13.5.2.2.2.2
Сократим общий множитель.
Этап 13.5.2.2.2.3
Перепишем это выражение.
Этап 13.5.2.2.2.4
Разделим на .
Этап 14
Подставим выражение для в .