Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Разделим каждый член на и упростим.
Этап 1.1.1
Разделим каждый член на .
Этап 1.1.2
Упростим левую часть.
Этап 1.1.2.1
Сократим общий множитель .
Этап 1.1.2.1.1
Сократим общий множитель.
Этап 1.1.2.1.2
Разделим на .
Этап 1.1.3
Упростим правую часть.
Этап 1.1.3.1
Упростим знаменатель.
Этап 1.1.3.1.1
Вынесем множитель из .
Этап 1.1.3.1.1.1
Вынесем множитель из .
Этап 1.1.3.1.1.2
Вынесем множитель из .
Этап 1.1.3.1.1.3
Вынесем множитель из .
Этап 1.1.3.1.2
Перепишем в виде .
Этап 1.2
Перегруппируем множители.
Этап 1.3
Умножим обе части на .
Этап 1.4
Упростим.
Этап 1.4.1
Умножим на .
Этап 1.4.2
Сократим общий множитель .
Этап 1.4.2.1
Сократим общий множитель.
Этап 1.4.2.2
Перепишем это выражение.
Этап 1.5
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Упростим ответ.
Этап 2.2.3.1
Перепишем в виде .
Этап 2.2.3.2
Упростим.
Этап 2.2.3.2.1
Объединим и .
Этап 2.2.3.2.2
Сократим общий множитель .
Этап 2.2.3.2.2.1
Сократим общий множитель.
Этап 2.2.3.2.2.2
Перепишем это выражение.
Этап 2.2.3.2.3
Умножим на .
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.3.1.1
Пусть . Найдем .
Этап 2.3.1.1.1
Перепишем.
Этап 2.3.1.1.2
Разделим на .
Этап 2.3.1.2
Переформулируем задачу с помощью и .
Этап 2.3.2
Разделим дробь на несколько дробей.
Этап 2.3.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
Интеграл по имеет вид .
Этап 2.3.5
Упростим.
Этап 2.3.6
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.2
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.2.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.2.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.