Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=4/((2y+1)^2)
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Сократим общий множитель.
Этап 1.2.2
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Дифференцируем .
Этап 2.2.1.1.2
По правилу суммы производная по имеет вид .
Этап 2.2.1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.1.1.3.3
Умножим на .
Этап 2.2.1.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.1.1.4.2
Добавим и .
Этап 2.2.1.2
Переформулируем задачу с помощью и .
Этап 2.2.2
Объединим и .
Этап 2.2.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.4
По правилу степени интеграл по имеет вид .
Этап 2.2.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.5.1
Перепишем в виде .
Этап 2.2.5.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.5.2.1
Умножим на .
Этап 2.2.5.2.2
Умножим на .
Этап 2.2.6
Заменим все вхождения на .
Этап 2.3
Применим правило дифференцирования постоянных функций.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Объединим и .
Этап 3.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Применим свойство дистрибутивности.
Этап 3.2.2.1.2
Умножим на .
Этап 3.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Перепишем.
Этап 3.4.2
Упростим путем добавления нулей.
Этап 3.4.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.4.3.1
Вынесем множитель из .
Этап 3.4.3.2
Вынесем множитель из .
Этап 3.4.3.3
Вынесем множитель из .
Этап 3.5
Вычтем из обеих частей уравнения.
Этап 3.6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Разделим каждый член на .
Этап 3.6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.6.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.6.2.1.1
Сократим общий множитель.
Этап 3.6.2.1.2
Разделим на .
Этап 3.6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.6.3.1
Вынесем знак минуса перед дробью.
Этап 3.6.3.2
Объединим числители над общим знаменателем.