Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=x(2+x^2)^4 , y(0)=0
,
Этап 1
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1.1
Дифференцируем .
Этап 2.3.1.1.2
По правилу суммы производная по имеет вид .
Этап 2.3.1.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.1.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.1.1.5
Добавим и .
Этап 2.3.1.2
Переформулируем задачу с помощью и .
Этап 2.3.2
Объединим и .
Этап 2.3.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
По правилу степени интеграл по имеет вид .
Этап 2.3.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Перепишем в виде .
Этап 2.3.5.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.5.2.1
Умножим на .
Этап 2.3.5.2.2
Умножим на .
Этап 2.3.6
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Используем начальное условие, чтобы найти значение , подставив вместо и вместо в .
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Возведение в любую положительную степень дает .
Этап 4.2.2
Добавим и .
Этап 4.2.3
Возведем в степень .
Этап 4.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.4.1
Вынесем множитель из .
Этап 4.2.4.2
Вынесем множитель из .
Этап 4.2.4.3
Сократим общий множитель.
Этап 4.2.4.4
Перепишем это выражение.
Этап 4.2.5
Объединим и .
Этап 4.3
Вычтем из обеих частей уравнения.
Этап 5
Подставим вместо в и упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Подставим вместо .
Этап 5.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Воспользуемся бином Ньютона.
Этап 5.2.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Возведем в степень .
Этап 5.2.2.2
Возведем в степень .
Этап 5.2.2.3
Умножим на .
Этап 5.2.2.4
Возведем в степень .
Этап 5.2.2.5
Умножим на .
Этап 5.2.2.6
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 5.2.2.6.1
Применим правило степени и перемножим показатели, .
Этап 5.2.2.6.2
Умножим на .
Этап 5.2.2.7
Возведем в степень .
Этап 5.2.2.8
Умножим на .
Этап 5.2.2.9
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 5.2.2.9.1
Применим правило степени и перемножим показатели, .
Этап 5.2.2.9.2
Умножим на .
Этап 5.2.2.10
Умножим на .
Этап 5.2.2.11
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 5.2.2.11.1
Применим правило степени и перемножим показатели, .
Этап 5.2.2.11.2
Умножим на .
Этап 5.2.2.12
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 5.2.2.12.1
Применим правило степени и перемножим показатели, .
Этап 5.2.2.12.2
Умножим на .
Этап 5.2.3
Применим свойство дистрибутивности.
Этап 5.2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.4.1.1
Вынесем множитель из .
Этап 5.2.4.1.2
Вынесем множитель из .
Этап 5.2.4.1.3
Сократим общий множитель.
Этап 5.2.4.1.4
Перепишем это выражение.
Этап 5.2.4.2
Объединим и .
Этап 5.2.4.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.4.3.1
Вынесем множитель из .
Этап 5.2.4.3.2
Сократим общий множитель.
Этап 5.2.4.3.3
Перепишем это выражение.
Этап 5.2.4.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.4.4.1
Вынесем множитель из .
Этап 5.2.4.4.2
Сократим общий множитель.
Этап 5.2.4.4.3
Перепишем это выражение.
Этап 5.2.4.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.4.5.1
Вынесем множитель из .
Этап 5.2.4.5.2
Сократим общий множитель.
Этап 5.2.4.5.3
Перепишем это выражение.
Этап 5.2.4.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.4.6.1
Вынесем множитель из .
Этап 5.2.4.6.2
Сократим общий множитель.
Этап 5.2.4.6.3
Перепишем это выражение.
Этап 5.2.4.7
Объединим и .
Этап 5.3
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Объединим числители над общим знаменателем.
Этап 5.3.2
Вычтем из .
Этап 5.3.3
Разделим на .
Этап 5.3.4
Добавим и .