Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Перегруппируем множители.
Этап 1.2
Умножим обе части на .
Этап 1.3
Упростим.
Этап 1.3.1
Переведем в .
Этап 1.3.2
Выразим через синусы и косинусы, затем сократим общие множители.
Этап 1.3.2.1
Изменим порядок и .
Этап 1.3.2.2
Добавим круглые скобки.
Этап 1.3.2.3
Выразим через синусы и косинусы.
Этап 1.3.2.4
Сократим общие множители.
Этап 1.3.3
Умножим на .
Этап 1.4
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Интеграл по имеет вид .
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим дробь на несколько дробей.
Этап 2.3.2
Разделим данный интеграл на несколько интегралов.
Этап 2.3.3
Сократим общий множитель и .
Этап 2.3.3.1
Вынесем множитель из .
Этап 2.3.3.2
Сократим общие множители.
Этап 2.3.3.2.1
Возведем в степень .
Этап 2.3.3.2.2
Вынесем множитель из .
Этап 2.3.3.2.3
Сократим общий множитель.
Этап 2.3.3.2.4
Перепишем это выражение.
Этап 2.3.3.2.5
Разделим на .
Этап 2.3.4
Интеграл по имеет вид .
Этап 2.3.5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.6
По правилу степени интеграл по имеет вид .
Этап 2.3.7
Упростим.
Этап 2.3.7.1
Упростим.
Этап 2.3.7.2
Упростим.
Этап 2.3.7.2.1
Объединим и .
Этап 2.3.7.2.2
Сократим общий множитель .
Этап 2.3.7.2.2.1
Сократим общий множитель.
Этап 2.3.7.2.2.2
Перепишем это выражение.
Этап 2.3.7.2.3
Умножим на .
Этап 2.3.8
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Разделим каждый член на и упростим.
Этап 3.1.1
Разделим каждый член на .
Этап 3.1.2
Упростим левую часть.
Этап 3.1.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.1.2.2
Разделим на .
Этап 3.1.3
Упростим правую часть.
Этап 3.1.3.1
Упростим каждый член.
Этап 3.1.3.1.1
Вынесем знак минуса из знаменателя .
Этап 3.1.3.1.2
Перепишем в виде .
Этап 3.1.3.1.3
Вынесем знак минуса из знаменателя .
Этап 3.1.3.1.4
Перепишем в виде .
Этап 3.1.3.1.5
Вынесем знак минуса из знаменателя .
Этап 3.1.3.1.6
Перепишем в виде .
Этап 3.2
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 4
Упростим постоянную интегрирования.