Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Сократим общий множитель.
Этап 1.2.3
Перепишем это выражение.
Этап 1.3
Избавимся от ненужных скобок.
Этап 1.4
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Объединим дроби.
Этап 2.2.1.1
Объединим и .
Этап 2.2.1.2
Упростим выражение.
Этап 2.2.1.2.1
Поменяем знак экспоненты и вынесем ее из знаменателя.
Этап 2.2.1.2.2
Перемножим экспоненты в .
Этап 2.2.1.2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.2.2.2
Умножим .
Этап 2.2.1.2.2.2.1
Умножим на .
Этап 2.2.1.2.2.2.2
Умножим на .
Этап 2.2.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.2.2.1
Пусть . Найдем .
Этап 2.2.2.1.1
Дифференцируем .
Этап 2.2.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2.2
Переформулируем задачу с помощью и .
Этап 2.2.3
Объединим и .
Этап 2.2.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.5
Интеграл по имеет вид .
Этап 2.2.6
Упростим.
Этап 2.2.7
Заменим все вхождения на .
Этап 2.3
По правилу степени интеграл по имеет вид .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Этап 3.2.1
Упростим левую часть.
Этап 3.2.1.1
Упростим .
Этап 3.2.1.1.1
Объединим и .
Этап 3.2.1.1.2
Сократим общий множитель .
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.2
Упростим правую часть.
Этап 3.2.2.1
Упростим .
Этап 3.2.2.1.1
Объединим и .
Этап 3.2.2.1.2
Применим свойство дистрибутивности.
Этап 3.2.2.1.3
Сократим общий множитель .
Этап 3.2.2.1.3.1
Сократим общий множитель.
Этап 3.2.2.1.3.2
Перепишем это выражение.
Этап 3.3
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 3.4
Развернем левую часть.
Этап 3.4.1
Развернем , вынося из логарифма.
Этап 3.4.2
Натуральный логарифм равен .
Этап 3.4.3
Умножим на .
Этап 3.5
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Упростим постоянную интегрирования.