Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=10/((2x-1)^2e^(y+2))
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Перегруппируем множители.
Этап 1.2
Умножим обе части на .
Этап 1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Объединим.
Этап 1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Вынесем множитель из .
Этап 1.3.2.2
Сократим общий множитель.
Этап 1.3.2.3
Перепишем это выражение.
Этап 1.3.3
Умножим на .
Этап 1.4
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Дифференцируем .
Этап 2.2.1.1.2
По правилу суммы производная по имеет вид .
Этап 2.2.1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.1.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.1.1.5
Добавим и .
Этап 2.2.1.2
Переформулируем задачу с помощью и .
Этап 2.2.2
Интеграл по имеет вид .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Дифференцируем .
Этап 2.3.2.1.2
По правилу суммы производная по имеет вид .
Этап 2.3.2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.2.1.3.3
Умножим на .
Этап 2.3.2.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.2.1.4.2
Добавим и .
Этап 2.3.2.2
Переформулируем задачу с помощью и .
Этап 2.3.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Умножим на .
Этап 2.3.3.2
Перенесем влево от .
Этап 2.3.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.1
Объединим и .
Этап 2.3.5.1.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.2.1
Вынесем множитель из .
Этап 2.3.5.1.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.2.2.1
Вынесем множитель из .
Этап 2.3.5.1.2.2.2
Сократим общий множитель.
Этап 2.3.5.1.2.2.3
Перепишем это выражение.
Этап 2.3.5.1.2.2.4
Разделим на .
Этап 2.3.5.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.3.5.2.1
Вынесем из знаменателя, возведя в степень.
Этап 2.3.5.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.3.5.2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.3.5.2.2.2
Умножим на .
Этап 2.3.6
По правилу степени интеграл по имеет вид .
Этап 2.3.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.7.1
Перепишем в виде .
Этап 2.3.7.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.7.2.1
Умножим на .
Этап 2.3.7.2.2
Объединим и .
Этап 2.3.7.2.3
Вынесем знак минуса перед дробью.
Этап 2.3.8
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 3.2
Развернем левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Развернем , вынося из логарифма.
Этап 3.2.2
Натуральный логарифм равен .
Этап 3.2.3
Умножим на .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Разобьем дробь на две дроби.
Этап 3.3.1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.2.1
Разобьем дробь на две дроби.
Этап 3.3.1.2.2
Вынесем знак минуса перед дробью.
Этап 3.3.1.2.3
Вынесем знак минуса перед дробью.
Этап 3.4
Вычтем из обеих частей уравнения.
Этап 4
Упростим постоянную интегрирования.