Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=1/(3(7-x)) ; with y(6)=19
; with
Этап 1
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Перепишем.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.2.2
Переформулируем задачу с помощью и .
Этап 2.3.3
Вынесем знак минуса перед дробью.
Этап 2.3.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
Интеграл по имеет вид .
Этап 2.3.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.6.1
Упростим.
Этап 2.3.6.2
Объединим и .
Этап 2.3.7
Заменим все вхождения на .
Этап 2.3.8
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Используем начальное условие, чтобы найти значение , подставив вместо и вместо в .
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Вычтем из .
Этап 4.2.1.2
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 4.2.1.3
Натуральный логарифм равен .
Этап 4.2.1.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.1.4.1
Умножим на .
Этап 4.2.1.4.2
Умножим на .
Этап 4.2.2
Добавим и .
Этап 5
Подставим вместо в и упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Подставим вместо .
Этап 5.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Изменим порядок и .
Этап 5.2.2
Упростим путем переноса под логарифм.