Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Решим относительно .
Этап 1.1.1
Упростим каждый член.
Этап 1.1.1.1
Применим свойство дистрибутивности.
Этап 1.1.1.2
Умножим на .
Этап 1.1.1.3
Применим свойство дистрибутивности.
Этап 1.1.2
Вычтем из обеих частей уравнения.
Этап 1.1.3
Вынесем множитель из .
Этап 1.1.3.1
Вынесем множитель из .
Этап 1.1.3.2
Вынесем множитель из .
Этап 1.1.3.3
Вынесем множитель из .
Этап 1.1.4
Разделим каждый член на и упростим.
Этап 1.1.4.1
Разделим каждый член на .
Этап 1.1.4.2
Упростим левую часть.
Этап 1.1.4.2.1
Сократим общий множитель .
Этап 1.1.4.2.1.1
Сократим общий множитель.
Этап 1.1.4.2.1.2
Разделим на .
Этап 1.1.4.3
Упростим правую часть.
Этап 1.1.4.3.1
Вынесем знак минуса перед дробью.
Этап 1.1.4.3.2
Вынесем множитель из .
Этап 1.1.4.3.3
Перепишем в виде .
Этап 1.1.4.3.4
Вынесем множитель из .
Этап 1.1.4.3.5
Упростим выражение.
Этап 1.1.4.3.5.1
Перепишем в виде .
Этап 1.1.4.3.5.2
Вынесем знак минуса перед дробью.
Этап 1.1.4.3.5.3
Умножим на .
Этап 1.1.4.3.5.4
Умножим на .
Этап 1.2
Умножим обе части на .
Этап 1.3
Сократим общий множитель .
Этап 1.3.1
Сократим общий множитель.
Этап 1.3.2
Перепишем это выражение.
Этап 1.4
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Разделим данный интеграл на несколько интегралов.
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Применим правило дифференцирования постоянных функций.
Этап 2.2.4
Упростим.
Этап 2.3
По правилу степени интеграл по имеет вид .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .