Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Этап 1.2.1
Сократим общий множитель.
Этап 1.2.2
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
По правилу степени интеграл по имеет вид .
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
По правилу степени интеграл по имеет вид .
Этап 2.3.3
Упростим ответ.
Этап 2.3.3.1
Перепишем в виде .
Этап 2.3.3.2
Упростим.
Этап 2.3.3.2.1
Объединим и .
Этап 2.3.3.2.2
Вынесем знак минуса перед дробью.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Этап 3.2.1
Упростим левую часть.
Этап 3.2.1.1
Упростим .
Этап 3.2.1.1.1
Объединим и .
Этап 3.2.1.1.2
Сократим общий множитель .
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.2
Упростим правую часть.
Этап 3.2.2.1
Упростим .
Этап 3.2.2.1.1
Упростим каждый член.
Этап 3.2.2.1.1.1
Объединим и .
Этап 3.2.2.1.1.2
Перенесем влево от .
Этап 3.2.2.1.2
Упростим члены.
Этап 3.2.2.1.2.1
Применим свойство дистрибутивности.
Этап 3.2.2.1.2.2
Сократим общий множитель .
Этап 3.2.2.1.2.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.2.1.2.2.2
Сократим общий множитель.
Этап 3.2.2.1.2.2.3
Перепишем это выражение.
Этап 3.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Упростим постоянную интегрирования.