Математический анализ Примеры

Решите Дифференциальное Уравнение (6y-sec(y)^2)dy-(1+sin(x))dx=0
Этап 1
Добавим к обеим частям уравнения.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разделим данный интеграл на несколько интегралов.
Этап 2.2.2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.3
По правилу степени интеграл по имеет вид .
Этап 2.2.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.5
Поскольку производная равна , интеграл равен .
Этап 2.2.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.6.1
Упростим.
Этап 2.2.6.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.6.2.1
Объединим и .
Этап 2.2.6.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.2.6.2.2.1
Вынесем множитель из .
Этап 2.2.6.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.2.6.2.2.2.1
Вынесем множитель из .
Этап 2.2.6.2.2.2.2
Сократим общий множитель.
Этап 2.2.6.2.2.2.3
Перепишем это выражение.
Этап 2.2.6.2.2.2.4
Разделим на .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
Применим правило дифференцирования постоянных функций.
Этап 2.3.3
Интеграл по имеет вид .
Этап 2.3.4
Упростим.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .