Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)+ysec(x)=tan(x)
Этап 1
Перепишем дифференциальное уравнение в виде .
Нажмите для увеличения количества этапов...
Этап 1.1
Вынесем множитель из .
Этап 1.2
Изменим порядок и .
Этап 2
Интегрирующий множитель определяется по формуле , где .
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интегрирование.
Этап 2.2
Интеграл по имеет вид .
Этап 2.3
Уберем постоянную интегрирования.
Этап 2.4
Экспонента и логарифм являются обратными функциями.
Этап 3
Умножим каждый член на интегрирующий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Применим свойство дистрибутивности.
Этап 3.2.2
Применим свойство дистрибутивности.
Этап 3.2.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Возведем в степень .
Этап 3.2.3.2
Возведем в степень .
Этап 3.2.3.3
Применим правило степени для объединения показателей.
Этап 3.2.3.4
Добавим и .
Этап 3.3
Применим свойство дистрибутивности.
Этап 3.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Возведем в степень .
Этап 3.4.2
Возведем в степень .
Этап 3.4.3
Применим правило степени для объединения показателей.
Этап 3.4.4
Добавим и .
Этап 3.5
Изменим порядок множителей в .
Этап 4
Перепишем левую часть как результат дифференцирования произведения.
Этап 5
Зададим интеграл на каждой стороне.
Этап 6
Проинтегрируем левую часть.
Этап 7
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 7.1
Разделим данный интеграл на несколько интегралов.
Этап 7.2
Поскольку производная равна , интеграл равен .
Этап 7.3
Используя формулы Пифагора, запишем в виде .
Этап 7.4
Разделим данный интеграл на несколько интегралов.
Этап 7.5
Применим правило дифференцирования постоянных функций.
Этап 7.6
Поскольку производная равна , интеграл равен .
Этап 7.7
Упростим.
Этап 8
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Сократим общий множитель.
Этап 8.2.1.2
Разделим на .
Этап 8.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Вынесем знак минуса перед дробью.
Этап 8.3.2
Объединим числители над общим знаменателем.
Этап 8.3.3
Объединим числители над общим знаменателем.
Этап 8.3.4
Объединим числители над общим знаменателем.