Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Разложим на множители.
Этап 1.1.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.1.2
Упростим.
Этап 1.1.2.1
Вынесем множитель из .
Этап 1.1.2.1.1
Возведем в степень .
Этап 1.1.2.1.2
Вынесем множитель из .
Этап 1.1.2.1.3
Вынесем множитель из .
Этап 1.1.2.1.4
Вынесем множитель из .
Этап 1.1.2.2
Избавимся от скобок.
Этап 1.1.2.3
Разложим на множители.
Этап 1.1.2.3.1
Вынесем множитель из .
Этап 1.1.2.3.1.1
Возведем в степень .
Этап 1.1.2.3.1.2
Вынесем множитель из .
Этап 1.1.2.3.1.3
Вынесем множитель из .
Этап 1.1.2.3.1.4
Вынесем множитель из .
Этап 1.1.2.3.2
Избавимся от ненужных скобок.
Этап 1.1.2.4
Объединим показатели степеней.
Этап 1.1.2.4.1
Возведем в степень .
Этап 1.1.2.4.2
Возведем в степень .
Этап 1.1.2.4.3
Применим правило степени для объединения показателей.
Этап 1.1.2.4.4
Добавим и .
Этап 1.2
Умножим обе части на .
Этап 1.3
Упростим.
Этап 1.3.1
Сократим общий множитель .
Этап 1.3.1.1
Вынесем множитель из .
Этап 1.3.1.2
Сократим общий множитель.
Этап 1.3.1.3
Перепишем это выражение.
Этап 1.3.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.3.2.1
Применим свойство дистрибутивности.
Этап 1.3.2.2
Применим свойство дистрибутивности.
Этап 1.3.2.3
Применим свойство дистрибутивности.
Этап 1.3.3
Упростим и объединим подобные члены.
Этап 1.3.3.1
Упростим каждый член.
Этап 1.3.3.1.1
Умножим на .
Этап 1.3.3.1.2
Умножим на .
Этап 1.3.3.1.3
Умножим на .
Этап 1.3.3.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 1.3.3.1.5
Умножим на , сложив экспоненты.
Этап 1.3.3.1.5.1
Перенесем .
Этап 1.3.3.1.5.2
Умножим на .
Этап 1.3.3.2
Добавим и .
Этап 1.3.3.3
Добавим и .
Этап 1.4
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Применим основные правила для показателей степени.
Этап 2.2.1.1
Вынесем из знаменателя, возведя в степень.
Этап 2.2.1.2
Перемножим экспоненты в .
Этап 2.2.1.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.2.2
Умножим на .
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Перепишем в виде .
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
Применим правило дифференцирования постоянных функций.
Этап 2.3.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
По правилу степени интеграл по имеет вид .
Этап 2.3.5
Упростим.
Этап 2.3.6
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Объединим и .
Этап 3.2
Найдем НОК знаменателей членов уравнения.
Этап 3.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.2.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Этап 3.2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 3.2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 3.2.5
Поскольку не имеет множителей, кроме и .
— простое число
Этап 3.2.6
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 3.2.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3.2.8
Множителем является само значение .
встречается раз.
Этап 3.2.9
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3.2.10
НОК представляет собой произведение числовой части и переменной части.
Этап 3.3
Каждый член в умножим на , чтобы убрать дроби.
Этап 3.3.1
Умножим каждый член на .
Этап 3.3.2
Упростим левую часть.
Этап 3.3.2.1
Сократим общий множитель .
Этап 3.3.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.3.2.1.2
Вынесем множитель из .
Этап 3.3.2.1.3
Сократим общий множитель.
Этап 3.3.2.1.4
Перепишем это выражение.
Этап 3.3.2.2
Умножим на .
Этап 3.3.3
Упростим правую часть.
Этап 3.3.3.1
Упростим каждый член.
Этап 3.3.3.1.1
Сократим общий множитель .
Этап 3.3.3.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.3.3.1.1.2
Вынесем множитель из .
Этап 3.3.3.1.1.3
Сократим общий множитель.
Этап 3.3.3.1.1.4
Перепишем это выражение.
Этап 3.3.3.1.2
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.3.1.3
Перепишем, используя свойство коммутативности умножения.
Этап 3.4
Решим уравнение.
Этап 3.4.1
Перепишем уравнение в виде .
Этап 3.4.2
Вынесем множитель из .
Этап 3.4.2.1
Вынесем множитель из .
Этап 3.4.2.2
Вынесем множитель из .
Этап 3.4.2.3
Вынесем множитель из .
Этап 3.4.2.4
Вынесем множитель из .
Этап 3.4.2.5
Вынесем множитель из .
Этап 3.4.3
Разделим каждый член на и упростим.
Этап 3.4.3.1
Разделим каждый член на .
Этап 3.4.3.2
Упростим левую часть.
Этап 3.4.3.2.1
Сократим общий множитель .
Этап 3.4.3.2.1.1
Сократим общий множитель.
Этап 3.4.3.2.1.2
Разделим на .
Этап 3.4.3.3
Упростим правую часть.
Этап 3.4.3.3.1
Вынесем знак минуса перед дробью.
Этап 3.4.3.3.2
Вынесем множитель из .
Этап 3.4.3.3.3
Вынесем множитель из .
Этап 3.4.3.3.4
Вынесем множитель из .
Этап 3.4.3.3.5
Вынесем множитель из .
Этап 3.4.3.3.6
Вынесем множитель из .
Этап 3.4.3.3.7
Упростим выражение.
Этап 3.4.3.3.7.1
Перепишем в виде .
Этап 3.4.3.3.7.2
Вынесем знак минуса перед дробью.
Этап 3.4.3.3.7.3
Умножим на .
Этап 3.4.3.3.7.4
Умножим на .
Этап 4
Упростим постоянную интегрирования.
Этап 5
Используем начальное условие, чтобы найти значение , подставив вместо и вместо в .
Этап 6
Этап 6.1
Перепишем уравнение в виде .
Этап 6.2
Упростим знаменатель.
Этап 6.2.1
Возведем в степень .
Этап 6.2.2
Умножим на .
Этап 6.2.3
Вычтем из .
Этап 6.3
Найдем НОК знаменателей членов уравнения.
Этап 6.3.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 6.3.2
Избавимся от скобок.
Этап 6.3.3
НОК единицы и любого выражения есть это выражение.
Этап 6.4
Каждый член в умножим на , чтобы убрать дроби.
Этап 6.4.1
Умножим каждый член на .
Этап 6.4.2
Упростим левую часть.
Этап 6.4.2.1
Сократим общий множитель .
Этап 6.4.2.1.1
Сократим общий множитель.
Этап 6.4.2.1.2
Перепишем это выражение.
Этап 6.4.3
Упростим правую часть.
Этап 6.4.3.1
Умножим на .
Этап 6.5
Решим уравнение.
Этап 6.5.1
Перепишем уравнение в виде .
Этап 6.5.2
Перенесем все члены без в правую часть уравнения.
Этап 6.5.2.1
Вычтем из обеих частей уравнения.
Этап 6.5.2.2
Вычтем из .
Этап 7
Этап 7.1
Подставим вместо .