Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Сократим общий множитель.
Этап 1.2.3
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.2.1.1
Пусть . Найдем .
Этап 2.2.1.1.1
Перепишем.
Этап 2.2.1.1.2
Разделим на .
Этап 2.2.1.2
Переформулируем задачу с помощью и .
Этап 2.2.2
Разделим дробь на несколько дробей.
Этап 2.2.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.4
Интеграл по имеет вид .
Этап 2.2.5
Упростим.
Этап 2.2.6
Заменим все вхождения на .
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.3.2.1
Пусть . Найдем .
Этап 2.3.2.1.1
Перепишем.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.2.2
Переформулируем задачу с помощью и .
Этап 2.3.3
Вынесем знак минуса перед дробью.
Этап 2.3.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
Упростим выражение.
Этап 2.3.5.1
Умножим на .
Этап 2.3.5.2
Вынесем из знаменателя, возведя в степень.
Этап 2.3.5.3
Перемножим экспоненты в .
Этап 2.3.5.3.1
Применим правило степени и перемножим показатели, .
Этап 2.3.5.3.2
Умножим на .
Этап 2.3.6
По правилу степени интеграл по имеет вид .
Этап 2.3.7
Упростим.
Этап 2.3.7.1
Перепишем в виде .
Этап 2.3.7.2
Упростим.
Этап 2.3.7.2.1
Умножим на .
Этап 2.3.7.2.2
Объединим и .
Этап 2.3.8
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Разделим каждый член на и упростим.
Этап 3.1.1
Разделим каждый член на .
Этап 3.1.2
Упростим левую часть.
Этап 3.1.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.1.2.2
Разделим на .
Этап 3.1.3
Упростим правую часть.
Этап 3.1.3.1
Объединим числители над общим знаменателем.
Этап 3.1.3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.1.3.3
Объединим числители над общим знаменателем.
Этап 3.1.3.4
Упростим числитель.
Этап 3.1.3.4.1
Применим свойство дистрибутивности.
Этап 3.1.3.4.2
Умножим на .
Этап 3.1.3.4.3
Перепишем, используя свойство коммутативности умножения.
Этап 3.1.3.5
Упростим выражение.
Этап 3.1.3.5.1
Вынесем знак минуса из знаменателя .
Этап 3.1.3.5.2
Перепишем в виде .
Этап 3.2
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 3.3
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 3.4
Решим относительно .
Этап 3.4.1
Перепишем уравнение в виде .
Этап 3.4.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 3.4.3
Перенесем все члены без в правую часть уравнения.
Этап 3.4.3.1
Вычтем из обеих частей уравнения.
Этап 3.4.3.2
Упростим каждый член.
Этап 3.4.3.2.1
Разобьем дробь на две дроби.
Этап 3.4.3.2.2
Упростим каждый член.
Этап 3.4.3.2.2.1
Разобьем дробь на две дроби.
Этап 3.4.3.2.2.2
Вынесем знак минуса перед дробью.
Этап 3.4.3.2.3
Применим свойство дистрибутивности.
Этап 3.4.3.2.4
Умножим .
Этап 3.4.3.2.4.1
Умножим на .
Этап 3.4.3.2.4.2
Умножим на .
Этап 3.4.4
Разделим каждый член на и упростим.
Этап 3.4.4.1
Разделим каждый член на .
Этап 3.4.4.2
Упростим левую часть.
Этап 3.4.4.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.4.4.2.2
Разделим на .
Этап 3.4.4.3
Упростим правую часть.
Этап 3.4.4.3.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.4.4.3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.4.4.3.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 3.4.4.3.3.1
Умножим на .
Этап 3.4.4.3.3.2
Умножим на .
Этап 3.4.4.3.3.3
Умножим на .
Этап 3.4.4.3.3.4
Умножим на .
Этап 3.4.4.3.4
Объединим числители над общим знаменателем.
Этап 3.4.4.3.5
Упростим каждый член.
Этап 3.4.4.3.5.1
Объединим числители над общим знаменателем.
Этап 3.4.4.3.5.2
Объединим числители над общим знаменателем.
Этап 3.4.4.3.5.3
Перенесем влево от .
Этап 3.4.4.3.5.4
Перепишем в виде .
Этап 3.4.4.3.5.5
Умножим на .
Этап 3.4.4.3.6
Разделим на .
Этап 4
Упростим постоянную интегрирования.