Введите задачу...
Математический анализ Примеры
Этап 1
Пусть . Подставим вместо .
Этап 2
Решим относительно .
Этап 3
Применим правило умножения, чтобы найти производную по .
Этап 4
Подставим вместо .
Этап 5
Этап 5.1
Разделим переменные.
Этап 5.1.1
Решим относительно .
Этап 5.1.1.1
Перенесем все члены без в правую часть уравнения.
Этап 5.1.1.1.1
Вычтем из обеих частей уравнения.
Этап 5.1.1.1.2
Объединим противоположные члены в .
Этап 5.1.1.1.2.1
Вычтем из .
Этап 5.1.1.1.2.2
Добавим и .
Этап 5.1.1.2
Разделим каждый член на и упростим.
Этап 5.1.1.2.1
Разделим каждый член на .
Этап 5.1.1.2.2
Упростим левую часть.
Этап 5.1.1.2.2.1
Сократим общий множитель .
Этап 5.1.1.2.2.1.1
Сократим общий множитель.
Этап 5.1.1.2.2.1.2
Разделим на .
Этап 5.1.2
Перепишем уравнение.
Этап 5.2
Проинтегрируем обе части.
Этап 5.2.1
Зададим интеграл на каждой стороне.
Этап 5.2.2
Применим правило дифференцирования постоянных функций.
Этап 5.2.3
Интеграл по имеет вид .
Этап 5.2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 6
Подставим вместо .
Этап 7
Этап 7.1
Умножим обе части на .
Этап 7.2
Упростим.
Этап 7.2.1
Упростим левую часть.
Этап 7.2.1.1
Сократим общий множитель .
Этап 7.2.1.1.1
Сократим общий множитель.
Этап 7.2.1.1.2
Перепишем это выражение.
Этап 7.2.2
Упростим правую часть.
Этап 7.2.2.1
Упростим .
Этап 7.2.2.1.1
Применим свойство дистрибутивности.
Этап 7.2.2.1.2
Упростим выражение.
Этап 7.2.2.1.2.1
Изменим порядок множителей в .
Этап 7.2.2.1.2.2
Изменим порядок и .