Введите задачу...
Математический анализ Примеры
Этап 1
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
Интеграл по имеет вид .
Этап 2.3.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.3.4.1
Пусть . Найдем .
Этап 2.3.4.1.1
Дифференцируем .
Этап 2.3.4.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.4.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4.1.4
Умножим на .
Этап 2.3.4.2
Переформулируем задачу с помощью и .
Этап 2.3.5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.6
Упростим.
Этап 2.3.6.1
Умножим на .
Этап 2.3.6.2
Умножим на .
Этап 2.3.7
Интеграл по имеет вид .
Этап 2.3.8
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.9
По правилу степени интеграл по имеет вид .
Этап 2.3.10
Упростим.
Этап 2.3.10.1
Объединим и .
Этап 2.3.10.2
Упростим.
Этап 2.3.11
Заменим все вхождения на .
Этап 2.3.12
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .