Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.2
Изменим порядок и .
Этап 2
Этап 2.1
Зададим интегрирование.
Этап 2.2
Интеграл по имеет вид .
Этап 2.3
Уберем постоянную интегрирования.
Этап 2.4
Экспонента и логарифм являются обратными функциями.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим каждый член.
Этап 3.2.1
Объединим и .
Этап 3.2.2
Сократим общий множитель .
Этап 3.2.2.1
Сократим общий множитель.
Этап 3.2.2.2
Перепишем это выражение.
Этап 4
Перепишем левую часть как результат дифференцирования произведения.
Этап 5
Зададим интеграл на каждой стороне.
Этап 6
Проинтегрируем левую часть.
Этап 7
Этап 7.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 7.1.1
Пусть . Найдем .
Этап 7.1.1.1
Дифференцируем .
Этап 7.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7.1.2
Переформулируем задачу с помощью и .
Этап 7.2
Объединим и .
Этап 7.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7.4
Интеграл по имеет вид .
Этап 7.5
Упростим.
Этап 7.5.1
Упростим.
Этап 7.5.2
Объединим и .
Этап 7.6
Заменим все вхождения на .
Этап 7.7
Изменим порядок членов.
Этап 8
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Этап 8.2.1
Сократим общий множитель .
Этап 8.2.1.1
Сократим общий множитель.
Этап 8.2.1.2
Разделим на .
Этап 8.3
Упростим правую часть.
Этап 8.3.1
Упростим каждый член.
Этап 8.3.1.1
Объединим и .
Этап 8.3.1.2
Умножим числитель на величину, обратную знаменателю.
Этап 8.3.1.3
Умножим на .
Этап 8.3.1.4
Перенесем влево от .