Математический анализ Примеры

Решите Дифференциальное Уравнение x(1+x^2)dx+y(1+y^2)dy=0
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Применим свойство дистрибутивности.
Этап 2.2.1.2
Изменим порядок и .
Этап 2.2.1.3
Умножим на .
Этап 2.2.1.4
Возведем в степень .
Этап 2.2.1.5
Применим правило степени для объединения показателей.
Этап 2.2.1.6
Добавим и .
Этап 2.2.1.7
Изменим порядок и .
Этап 2.2.2
Разделим данный интеграл на несколько интегралов.
Этап 2.2.3
По правилу степени интеграл по имеет вид .
Этап 2.2.4
По правилу степени интеграл по имеет вид .
Этап 2.2.5
Упростим.
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1.1
Дифференцируем .
Этап 2.3.1.1.2
По правилу суммы производная по имеет вид .
Этап 2.3.1.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.1.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.1.1.5
Добавим и .
Этап 2.3.1.2
Переформулируем задачу с помощью и .
Этап 2.3.2
Объединим и .
Этап 2.3.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
По правилу степени интеграл по имеет вид .
Этап 2.3.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.6.1
Перепишем в виде .
Этап 2.3.6.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.1
Умножим на .
Этап 2.3.6.2.2
Умножим на .
Этап 2.3.7
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .