Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=3y^(2/3)
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.2.2
Объединим и .
Этап 1.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Сократим общий множитель.
Этап 1.2.3.2
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Вынесем из знаменателя, возведя в степень.
Этап 2.2.1.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.2.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.2.1
Объединим и .
Этап 2.2.1.2.2.2
Умножим на .
Этап 2.2.1.2.3
Вынесем знак минуса перед дробью.
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.3
Применим правило дифференцирования постоянных функций.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Разделим каждый член на .
Этап 3.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Сократим общий множитель.
Этап 3.1.2.2
Разделим на .
Этап 3.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.3.1.1
Сократим общий множитель.
Этап 3.1.3.1.2
Разделим на .
Этап 3.2
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 3.3
Упростим показатель степени.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.3.1.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1.1.2.1
Сократим общий множитель.
Этап 3.3.1.1.1.2.2
Перепишем это выражение.
Этап 3.3.1.1.2
Упростим.
Этап 3.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Воспользуемся бином Ньютона.
Этап 3.3.2.1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.2.1.1
Вынесем множитель из .
Этап 3.3.2.1.2.1.2
Сократим общий множитель.
Этап 3.3.2.1.2.1.3
Перепишем это выражение.
Этап 3.3.2.1.2.2
Применим правило умножения к .
Этап 3.3.2.1.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.2.3.1
Вынесем множитель из .
Этап 3.3.2.1.2.3.2
Вынесем множитель из .
Этап 3.3.2.1.2.3.3
Сократим общий множитель.
Этап 3.3.2.1.2.3.4
Перепишем это выражение.
Этап 3.3.2.1.2.4
Объединим и .
Этап 3.3.2.1.2.5
Применим правило умножения к .
Этап 3.3.2.1.2.6
Возведем в степень .
Этап 3.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Изменим порядок и .
Этап 3.4.2
Изменим порядок и .
Этап 3.4.3
Перенесем .
Этап 3.4.4
Перенесем .
Этап 3.4.5
Изменим порядок и .
Этап 4
Упростим постоянную интегрирования.