Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Сократим общий множитель.
Этап 1.2.3
Перепишем это выражение.
Этап 1.3
Избавимся от ненужных скобок.
Этап 1.4
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Объединим и .
Этап 2.2.2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.3
Интеграл по имеет вид .
Этап 2.2.4
Упростим.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Применим правило дифференцирования постоянных функций.
Этап 2.3.2
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Разделим каждый член на и упростим.
Этап 3.1.1
Разделим каждый член на .
Этап 3.1.2
Упростим левую часть.
Этап 3.1.2.1
Сократим общий множитель .
Этап 3.1.2.1.1
Сократим общий множитель.
Этап 3.1.2.1.2
Разделим на .
Этап 3.1.3
Упростим правую часть.
Этап 3.1.3.1
Упростим каждый член.
Этап 3.1.3.1.1
Сократим общий множитель и .
Этап 3.1.3.1.1.1
Вынесем множитель из .
Этап 3.1.3.1.1.2
Сократим общие множители.
Этап 3.1.3.1.1.2.1
Вынесем множитель из .
Этап 3.1.3.1.1.2.2
Сократим общий множитель.
Этап 3.1.3.1.1.2.3
Перепишем это выражение.
Этап 3.1.3.1.1.2.4
Разделим на .
Этап 3.1.3.1.2
Применим свойство дистрибутивности.
Этап 3.1.3.1.3
Перенесем влево от .
Этап 3.1.3.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 3.2
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 3.3
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 3.4
Решим относительно .
Этап 3.4.1
Перепишем уравнение в виде .
Этап 3.4.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 4
Этап 4.1
Упростим постоянную интегрирования.
Этап 4.2
Перепишем в виде .
Этап 4.3
Изменим порядок и .
Этап 4.4
Объединим константы с плюсом или минусом.