Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=(4x+xy^2)/(2+x^2)
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.1.4
Умножим на .
Этап 1.2
Перегруппируем множители.
Этап 1.3
Умножим обе части на .
Этап 1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.1
Вынесем множитель из .
Этап 1.4.2
Сократим общий множитель.
Этап 1.4.3
Перепишем это выражение.
Этап 1.5
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перепишем в виде .
Этап 2.2.2
Интеграл по имеет вид .
Этап 2.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Объединим и .
Этап 2.2.3.2
Перепишем в виде .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1.1
Дифференцируем .
Этап 2.3.1.1.2
По правилу суммы производная по имеет вид .
Этап 2.3.1.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.1.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.1.1.5
Добавим и .
Этап 2.3.1.2
Переформулируем задачу с помощью и .
Этап 2.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Умножим на .
Этап 2.3.2.2
Перенесем влево от .
Этап 2.3.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
Интеграл по имеет вид .
Этап 2.3.5
Упростим.
Этап 2.3.6
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Умножим каждый член на .
Этап 3.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Объединим и .
Этап 3.1.2.2
Объединим и .
Этап 3.1.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.2.3.1
Сократим общий множитель.
Этап 3.1.2.3.2
Перепишем это выражение.
Этап 3.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1.1
Упростим путем переноса под логарифм.
Этап 3.1.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.1.3.1.2.1
Изменим порядок и .
Этап 3.1.3.1.2.2
Упростим путем переноса под логарифм.
Этап 3.1.3.1.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.1.3.1.3.1
Применим правило степени и перемножим показатели, .
Этап 3.1.3.1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.3.1.3.2.1
Сократим общий множитель.
Этап 3.1.3.1.3.2.2
Перепишем это выражение.
Этап 3.1.3.1.4
Упростим.
Этап 3.1.3.1.5
Перенесем влево от .
Этап 3.2
Возьмем обратную арктангенса обеих частей уравнения, чтобы извлечь из арктангенса.
Этап 3.3
Умножим обе части уравнения на .
Этап 3.4
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1
Сократим общий множитель.
Этап 3.4.1.2
Перепишем это выражение.
Этап 4
Упростим постоянную интегрирования.