Математический анализ Примеры

Решите Дифференциальное Уравнение 3x^2( натуральный логарифм от y)dx+(x^2)/ydy=0
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Умножим обе части на .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Объединим.
Этап 3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель.
Этап 3.2.2
Перепишем это выражение.
Этап 3.3
Изменим порядок множителей в .
Этап 3.4
Перепишем, используя свойство коммутативности умножения.
Этап 3.5
Объединим и .
Этап 3.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.6.1
Сократим общий множитель.
Этап 3.6.2
Перепишем это выражение.
Этап 4
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 4.1
Зададим интеграл на каждой стороне.
Этап 4.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1.1
Дифференцируем .
Этап 4.2.1.1.2
Производная по равна .
Этап 4.2.1.2
Переформулируем задачу с помощью и .
Этап 4.2.2
Интеграл по имеет вид .
Этап 4.2.3
Заменим все вхождения на .
Этап 4.3
Применим правило дифференцирования постоянных функций.
Этап 4.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 5.2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 5.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Перепишем уравнение в виде .
Этап 5.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 5.3.2.2
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 5.3.2.3
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 5.3.2.4
Перепишем уравнение в виде .
Этап 6
Сгруппируем постоянные члены.
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем в виде .
Этап 6.2
Изменим порядок и .
Этап 6.3
Объединим константы с плюсом или минусом.