Математический анализ Примеры

Решите Дифференциальное Уравнение xdx+ye^(-x)dy=0
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Умножим обе части на .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Сократим общий множитель.
Этап 3.1.3
Перепишем это выражение.
Этап 3.2
Перепишем, используя свойство коммутативности умножения.
Этап 3.3
Объединим и .
Этап 4
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 4.1
Зададим интеграл на каждой стороне.
Этап 4.2
По правилу степени интеграл по имеет вид .
Этап 4.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Поменяем знак экспоненты и вынесем ее из знаменателя.
Этап 4.3.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 4.3.2.2.1
Применим правило степени и перемножим показатели, .
Этап 4.3.2.2.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.3.2.2.2.1
Умножим на .
Этап 4.3.2.2.2.2
Умножим на .
Этап 4.3.3
Проинтегрируем по частям, используя формулу , где и .
Этап 4.3.4
Интеграл по имеет вид .
Этап 4.3.5
Упростим.
Этап 4.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим обе части уравнения на .
Этап 5.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1.1
Объединим и .
Этап 5.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1.2.1
Сократим общий множитель.
Этап 5.2.1.1.2.2
Перепишем это выражение.
Этап 5.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.1.1
Применим свойство дистрибутивности.
Этап 5.2.2.1.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.1.2.1
Умножим на .
Этап 5.2.2.1.1.2.2
Умножим на .
Этап 5.2.2.1.2
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.2.1
Применим свойство дистрибутивности.
Этап 5.2.2.1.2.2
Умножим на .
Этап 5.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.4
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.4.1
Вынесем множитель из .
Этап 5.4.2
Вынесем множитель из .
Этап 5.4.3
Вынесем множитель из .
Этап 5.4.4
Вынесем множитель из .
Этап 5.4.5
Вынесем множитель из .
Этап 5.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 5.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.