Введите задачу...
Математический анализ Примеры
Этап 1
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.3
По правилу степени интеграл по имеет вид .
Этап 2.3.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
По правилу степени интеграл по имеет вид .
Этап 2.3.6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.7
По правилу степени интеграл по имеет вид .
Этап 2.3.8
Применим правило дифференцирования постоянных функций.
Этап 2.3.9
Упростим.
Этап 2.3.9.1
Упростим.
Этап 2.3.9.1.1
Объединим и .
Этап 2.3.9.1.2
Объединим и .
Этап 2.3.9.1.3
Объединим и .
Этап 2.3.9.2
Упростим.
Этап 2.3.9.3
Изменим порядок членов.
Этап 2.3.10
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .