Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=(2xy)/((x^2-2)(y^2+3))
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Перегруппируем множители.
Этап 1.2
Умножим обе части на .
Этап 1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Умножим на .
Этап 1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Вынесем множитель из .
Этап 1.3.2.2
Сократим общий множитель.
Этап 1.3.2.3
Перепишем это выражение.
Этап 1.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Вынесем множитель из .
Этап 1.3.3.2
Сократим общий множитель.
Этап 1.3.3.3
Перепишем это выражение.
Этап 1.4
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разделим дробь на несколько дробей.
Этап 2.2.2
Разделим данный интеграл на несколько интегралов.
Этап 2.2.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Вынесем множитель из .
Этап 2.2.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.2.3.2.1
Возведем в степень .
Этап 2.2.3.2.2
Вынесем множитель из .
Этап 2.2.3.2.3
Сократим общий множитель.
Этап 2.2.3.2.4
Перепишем это выражение.
Этап 2.2.3.2.5
Разделим на .
Этап 2.2.4
По правилу степени интеграл по имеет вид .
Этап 2.2.5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.6
Интеграл по имеет вид .
Этап 2.2.7
Упростим.
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Дифференцируем .
Этап 2.3.2.1.2
По правилу суммы производная по имеет вид .
Этап 2.3.2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.2.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.2.1.5
Добавим и .
Этап 2.3.2.2
Переформулируем задачу с помощью и .
Этап 2.3.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Умножим на .
Этап 2.3.3.2
Перенесем влево от .
Этап 2.3.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Объединим и .
Этап 2.3.5.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.5.2.1
Сократим общий множитель.
Этап 2.3.5.2.2
Перепишем это выражение.
Этап 2.3.5.3
Умножим на .
Этап 2.3.6
Интеграл по имеет вид .
Этап 2.3.7
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .