Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Разделим каждый член на .
Этап 1.3
Сократим общий множитель .
Этап 1.3.1
Сократим общий множитель.
Этап 1.3.2
Разделим на .
Этап 1.4
Сократим общий множитель .
Этап 1.4.1
Сократим общий множитель.
Этап 1.4.2
Разделим на .
Этап 1.5
Сократим общий множитель и .
Этап 1.5.1
Вынесем множитель из .
Этап 1.5.2
Сократим общие множители.
Этап 1.5.2.1
Возведем в степень .
Этап 1.5.2.2
Вынесем множитель из .
Этап 1.5.2.3
Сократим общий множитель.
Этап 1.5.2.4
Перепишем это выражение.
Этап 1.5.2.5
Разделим на .
Этап 2
Этап 2.1
Зададим интегрирование.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Уберем постоянную интегрирования.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Перепишем, используя свойство коммутативности умножения.
Этап 3.3
Перепишем, используя свойство коммутативности умножения.
Этап 3.4
Изменим порядок множителей в .
Этап 4
Перепишем левую часть как результат дифференцирования произведения.
Этап 5
Зададим интеграл на каждой стороне.
Этап 6
Проинтегрируем левую часть.
Этап 7
Этап 7.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7.2
Проинтегрируем по частям, используя формулу , где и .
Этап 7.3
Упростим.
Этап 7.3.1
Объединим и .
Этап 7.3.2
Объединим и .
Этап 7.3.3
Объединим и .
Этап 7.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7.5
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 7.5.1
Пусть . Найдем .
Этап 7.5.1.1
Дифференцируем .
Этап 7.5.1.2
Поскольку является константой относительно , производная по равна .
Этап 7.5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7.5.1.4
Умножим на .
Этап 7.5.2
Переформулируем задачу с помощью и .
Этап 7.6
Объединим и .
Этап 7.7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7.8
Упростим.
Этап 7.8.1
Умножим на .
Этап 7.8.2
Умножим на .
Этап 7.9
Интеграл по имеет вид .
Этап 7.10
Перепишем в виде .
Этап 7.11
Заменим все вхождения на .
Этап 7.12
Упростим.
Этап 7.12.1
Упростим каждый член.
Этап 7.12.1.1
Объединим и .
Этап 7.12.1.2
Объединим и .
Этап 7.12.1.3
Объединим и .
Этап 7.12.2
Применим свойство дистрибутивности.
Этап 7.12.3
Сократим общий множитель .
Этап 7.12.3.1
Вынесем множитель из .
Этап 7.12.3.2
Сократим общий множитель.
Этап 7.12.3.3
Перепишем это выражение.
Этап 7.12.4
Сократим общий множитель .
Этап 7.12.4.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 7.12.4.2
Вынесем множитель из .
Этап 7.12.4.3
Сократим общий множитель.
Этап 7.12.4.4
Перепишем это выражение.
Этап 7.12.5
Вынесем знак минуса перед дробью.
Этап 7.13
Изменим порядок членов.
Этап 8
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Этап 8.2.1
Сократим общий множитель .
Этап 8.2.1.1
Сократим общий множитель.
Этап 8.2.1.2
Разделим на .
Этап 8.3
Упростим правую часть.
Этап 8.3.1
Упростим каждый член.
Этап 8.3.1.1
Сократим общий множитель .
Этап 8.3.1.1.1
Сократим общий множитель.
Этап 8.3.1.1.2
Разделим на .
Этап 8.3.1.2
Сократим общий множитель .
Этап 8.3.1.2.1
Сократим общий множитель.
Этап 8.3.1.2.2
Разделим на .
Этап 8.3.2
Вычтем из .
Этап 8.3.2.1
Изменим порядок и .
Этап 8.3.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.3.2.3
Объединим и .
Этап 8.3.2.4
Объединим числители над общим знаменателем.
Этап 8.3.3
Упростим числитель.
Этап 8.3.3.1
Объединим и .
Этап 8.3.3.2
Сократим общий множитель .
Этап 8.3.3.2.1
Вынесем множитель из .
Этап 8.3.3.2.2
Сократим общий множитель.
Этап 8.3.3.2.3
Перепишем это выражение.
Этап 8.3.3.3
Перенесем влево от .
Этап 8.3.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.3.5
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.3.6
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 8.3.6.1
Умножим на .
Этап 8.3.6.2
Умножим на .
Этап 8.3.6.3
Изменим порядок множителей в .
Этап 8.3.7
Объединим числители над общим знаменателем.
Этап 8.3.8
Упростим числитель.
Этап 8.3.8.1
Применим свойство дистрибутивности.
Этап 8.3.8.2
Перепишем в виде .
Этап 8.3.8.3
Перенесем влево от .