Математический анализ Примеры

Решите Дифференциальное Уравнение x^2(dy)/(dx)=y^2+xy+4x^2
Этап 1
Перепишем дифференциальное уравнение в виде функции от .
Нажмите для увеличения количества этапов...
Этап 1.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Разделим каждый член на .
Этап 1.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Сократим общий множитель.
Этап 1.1.2.1.2
Разделим на .
Этап 1.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1.1
Вынесем множитель из .
Этап 1.1.3.1.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1.2.1
Вынесем множитель из .
Этап 1.1.3.1.1.2.2
Сократим общий множитель.
Этап 1.1.3.1.1.2.3
Перепишем это выражение.
Этап 1.1.3.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.2.1
Сократим общий множитель.
Этап 1.1.3.1.2.2
Разделим на .
Этап 1.2
Перепишем в виде .
Этап 2
Пусть . Подставим вместо .
Этап 3
Решим относительно .
Этап 4
Применим правило умножения, чтобы найти производную по .
Этап 5
Подставим вместо .
Этап 6
Решим подставленное дифференциальное уравнение.
Нажмите для увеличения количества этапов...
Этап 6.1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1.1.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 6.1.1.1.1
Вычтем из обеих частей уравнения.
Этап 6.1.1.1.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 6.1.1.1.2.1
Вычтем из .
Этап 6.1.1.1.2.2
Добавим и .
Этап 6.1.1.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.1.1.2.1
Разделим каждый член на .
Этап 6.1.1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.1.1.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.1.1.2.2.1.1
Сократим общий множитель.
Этап 6.1.1.2.2.1.2
Разделим на .
Этап 6.1.2
Объединим числители над общим знаменателем.
Этап 6.1.3
Умножим обе части на .
Этап 6.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.1.4.1
Сократим общий множитель.
Этап 6.1.4.2
Перепишем это выражение.
Этап 6.1.5
Перепишем уравнение.
Этап 6.2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Зададим интеграл на каждой стороне.
Этап 6.2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1
Изменим порядок и .
Этап 6.2.2.1.2
Перепишем в виде .
Этап 6.2.2.2
Интеграл по имеет вид .
Этап 6.2.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 6.2.2.3.1
Объединим и .
Этап 6.2.2.3.2
Перепишем в виде .
Этап 6.2.3
Интеграл по имеет вид .
Этап 6.2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 6.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 6.3.1.1
Умножим каждый член на .
Этап 6.3.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.1.2.1
Объединим и .
Этап 6.3.1.2.2
Объединим и .
Этап 6.3.1.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.1.2.3.1
Сократим общий множитель.
Этап 6.3.1.2.3.2
Перепишем это выражение.
Этап 6.3.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.3.1.3.1.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.3.1.3.1.1.1
Изменим порядок и .
Этап 6.3.1.3.1.1.2
Упростим путем переноса под логарифм.
Этап 6.3.1.3.1.2
Уберем знак модуля в , поскольку любое число в четной степени всегда положительное.
Этап 6.3.1.3.1.3
Перенесем влево от .
Этап 6.3.2
Возьмем обратную арктангенса обеих частей уравнения, чтобы извлечь из арктангенса.
Этап 6.3.3
Умножим обе части уравнения на .
Этап 6.3.4
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.4.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.4.1.1
Сократим общий множитель.
Этап 6.3.4.1.2
Перепишем это выражение.
Этап 6.4
Упростим постоянную интегрирования.
Этап 7
Подставим вместо .
Этап 8
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 8.1
Умножим обе части на .
Этап 8.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.1.1.1
Сократим общий множитель.
Этап 8.2.1.1.2
Перепишем это выражение.
Этап 8.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.2.1
Изменим порядок множителей в .