Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=1/(2y+1)
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Сократим общий множитель.
Этап 1.2.2
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разделим данный интеграл на несколько интегралов.
Этап 2.2.2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.3
По правилу степени интеграл по имеет вид .
Этап 2.2.4
Применим правило дифференцирования постоянных функций.
Этап 2.2.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.5.1
Объединим и .
Этап 2.2.5.2
Упростим.
Этап 2.3
Применим правило дифференцирования постоянных функций.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все выражения в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Вычтем из обеих частей уравнения.
Этап 3.2
Используем формулу для нахождения корней квадратного уравнения.
Этап 3.3
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 3.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.4.1.1
Единица в любой степени равна единице.
Этап 3.4.1.2
Умножим на .
Этап 3.4.1.3
Применим свойство дистрибутивности.
Этап 3.4.1.4
Умножим на .
Этап 3.4.1.5
Умножим на .
Этап 3.4.2
Умножим на .
Этап 3.5
Окончательный ответ является комбинацией обоих решений.
Этап 4
Упростим постоянную интегрирования.