Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2
Перепишем в виде .
Этап 1.3
По правилу суммы производная по имеет вид .
Этап 1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.6
Добавим и .
Этап 1.7
Подставим вместо .
Этап 1.8
Изменим порядок и .
Этап 1.9
Умножим на .
Этап 2
Перепишем левую часть как результат дифференцирования произведения.
Этап 3
Зададим интеграл на каждой стороне.
Этап 4
Проинтегрируем левую часть.
Этап 5
Этап 5.1
Проинтегрируем по частям, используя формулу , где и .
Этап 5.2
Упростим.
Этап 5.2.1
Объединим и .
Этап 5.2.2
Сократим общий множитель .
Этап 5.2.2.1
Сократим общий множитель.
Этап 5.2.2.2
Перепишем это выражение.
Этап 5.3
Применим правило дифференцирования постоянных функций.
Этап 5.4
Упростим.
Этап 6
Этап 6.1
Разделим каждый член на .
Этап 6.2
Упростим левую часть.
Этап 6.2.1
Сократим общий множитель .
Этап 6.2.1.1
Сократим общий множитель.
Этап 6.2.1.2
Разделим на .
Этап 6.3
Упростим правую часть.
Этап 6.3.1
Вынесем знак минуса перед дробью.
Этап 6.3.2
Объединим числители над общим знаменателем.
Этап 6.3.3
Объединим числители над общим знаменателем.
Этап 6.3.4
Изменим порядок множителей в .