Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Умножим обе части на .
Этап 1.2
Упростим.
Этап 1.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.2.2
Объединим.
Этап 1.2.3
Сократим общий множитель .
Этап 1.2.3.1
Вынесем множитель из .
Этап 1.2.3.2
Вынесем множитель из .
Этап 1.2.3.3
Сократим общий множитель.
Этап 1.2.3.4
Перепишем это выражение.
Этап 1.2.4
Умножим на .
Этап 1.2.5
Объединим и .
Этап 1.3
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Пусть . Тогда . Перепишем, используя и .
Этап 2.2.1.1
Пусть . Найдем .
Этап 2.2.1.1.1
Дифференцируем .
Этап 2.2.1.1.2
По правилу суммы производная по имеет вид .
Этап 2.2.1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.1.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.1.1.5
Добавим и .
Этап 2.2.1.2
Переформулируем задачу с помощью и .
Этап 2.2.2
Применим основные правила для показателей степени.
Этап 2.2.2.1
Вынесем из знаменателя, возведя в степень.
Этап 2.2.2.2
Перемножим экспоненты в .
Этап 2.2.2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.2.2.2
Умножим на .
Этап 2.2.3
По правилу степени интеграл по имеет вид .
Этап 2.2.4
Перепишем в виде .
Этап 2.2.5
Заменим все вхождения на .
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
По правилу степени интеграл по имеет вид .
Этап 2.3.3
Упростим ответ.
Этап 2.3.3.1
Перепишем в виде .
Этап 2.3.3.2
Упростим.
Этап 2.3.3.2.1
Умножим на .
Этап 2.3.3.2.2
Умножим на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Объединим и .
Этап 3.2
Найдем НОК знаменателей членов уравнения.
Этап 3.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 3.2.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 3.2.4
У есть множители: и .
Этап 3.2.5
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 3.2.6
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3.2.7
Умножим на .
Этап 3.2.8
Множителем является само значение .
встречается раз.
Этап 3.2.9
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3.2.10
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3.3
Каждый член в умножим на , чтобы убрать дроби.
Этап 3.3.1
Умножим каждый член на .
Этап 3.3.2
Упростим левую часть.
Этап 3.3.2.1
Сократим общий множитель .
Этап 3.3.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.3.2.1.2
Вынесем множитель из .
Этап 3.3.2.1.3
Сократим общий множитель.
Этап 3.3.2.1.4
Перепишем это выражение.
Этап 3.3.2.2
Умножим на .
Этап 3.3.3
Упростим правую часть.
Этап 3.3.3.1
Упростим каждый член.
Этап 3.3.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.3.1.2
Сократим общий множитель .
Этап 3.3.3.1.2.1
Сократим общий множитель.
Этап 3.3.3.1.2.2
Перепишем это выражение.
Этап 3.3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.3.1.4
Перенесем влево от .
Этап 3.3.3.1.5
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.3.1.6
Применим свойство дистрибутивности.
Этап 3.3.3.1.7
Умножим на .
Этап 3.4
Решим уравнение.
Этап 3.4.1
Перепишем уравнение в виде .
Этап 3.4.2
Перенесем все члены без в правую часть уравнения.
Этап 3.4.2.1
Добавим к обеим частям уравнения.
Этап 3.4.2.2
Добавим к обеим частям уравнения.
Этап 3.4.3
Вынесем множитель из .
Этап 3.4.3.1
Вынесем множитель из .
Этап 3.4.3.2
Вынесем множитель из .
Этап 3.4.3.3
Вынесем множитель из .
Этап 3.4.4
Разделим каждый член на и упростим.
Этап 3.4.4.1
Разделим каждый член на .
Этап 3.4.4.2
Упростим левую часть.
Этап 3.4.4.2.1
Сократим общий множитель .
Этап 3.4.4.2.1.1
Сократим общий множитель.
Этап 3.4.4.2.1.2
Разделим на .
Этап 3.4.4.3
Упростим правую часть.
Этап 3.4.4.3.1
Вынесем знак минуса перед дробью.
Этап 3.4.4.3.2
Объединим числители над общим знаменателем.
Этап 3.4.4.3.3
Объединим числители над общим знаменателем.
Этап 3.4.4.3.4
Вынесем множитель из .
Этап 3.4.4.3.4.1
Вынесем множитель из .
Этап 3.4.4.3.4.2
Вынесем множитель из .
Этап 3.4.4.3.4.3
Вынесем множитель из .
Этап 3.4.4.3.4.4
Вынесем множитель из .
Этап 3.4.4.3.5
Перепишем в виде .
Этап 3.4.4.3.6
Вынесем множитель из .
Этап 3.4.4.3.7
Вынесем множитель из .
Этап 3.4.4.3.8
Вынесем множитель из .
Этап 3.4.4.3.9
Вынесем множитель из .
Этап 3.4.4.3.10
Вынесем знак минуса перед дробью.
Этап 4
Упростим постоянную интегрирования.