Введите задачу...
Математический анализ Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Умножим обе части на .
Этап 3
Этап 3.1
Сократим общий множитель .
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Сократим общий множитель.
Этап 3.1.3
Перепишем это выражение.
Этап 3.2
Перепишем, используя свойство коммутативности умножения.
Этап 3.3
Сократим общий множитель .
Этап 3.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.3.2
Вынесем множитель из .
Этап 3.3.3
Сократим общий множитель.
Этап 3.3.4
Перепишем это выражение.
Этап 3.4
Вынесем знак минуса перед дробью.
Этап 3.5
Применим свойство дистрибутивности.
Этап 3.6
Сократим общий множитель .
Этап 3.6.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.6.2
Вынесем множитель из .
Этап 3.6.3
Сократим общий множитель.
Этап 3.6.4
Перепишем это выражение.
Этап 3.7
Умножим на .
Этап 4
Этап 4.1
Зададим интеграл на каждой стороне.
Этап 4.2
Проинтегрируем левую часть.
Этап 4.2.1
Проинтегрируем по частям, используя формулу , где и .
Этап 4.2.2
Интеграл по имеет вид .
Этап 4.2.3
Упростим.
Этап 4.2.4
Изменим порядок членов.
Этап 4.3
Проинтегрируем правую часть.
Этап 4.3.1
Разделим данный интеграл на несколько интегралов.
Этап 4.3.2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.3
По правилу степени интеграл по имеет вид .
Этап 4.3.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.5
Интеграл по имеет вид .
Этап 4.3.6
Упростим.
Этап 4.4
Сгруппируем постоянную интегрирования в правой части как .