Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Зададим интеграл на каждой стороне.
Этап 1.2
Интеграл по имеет вид .
Этап 1.3
Проинтегрируем правую часть.
Этап 1.3.1
Применим основные правила для показателей степени.
Этап 1.3.1.1
Вынесем из знаменателя, возведя в степень.
Этап 1.3.1.2
Перемножим экспоненты в .
Этап 1.3.1.2.1
Применим правило степени и перемножим показатели, .
Этап 1.3.1.2.2
Умножим на .
Этап 1.3.2
По правилу степени интеграл по имеет вид .
Этап 1.3.3
Перепишем в виде .
Этап 1.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 2
Этап 2.1
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 2.2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 2.3
Решим относительно .
Этап 2.3.1
Перепишем уравнение в виде .
Этап 2.3.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 3
Этап 3.1
Перепишем в виде .
Этап 3.2
Изменим порядок и .
Этап 3.3
Объединим константы с плюсом или минусом.