Введите задачу...
Математический анализ Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Умножим обе части на .
Этап 3
Этап 3.1
Сократим общий множитель .
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Вынесем множитель из .
Этап 3.1.3
Сократим общий множитель.
Этап 3.1.4
Перепишем это выражение.
Этап 3.2
Умножим на .
Этап 3.3
Перепишем, используя свойство коммутативности умножения.
Этап 3.4
Сократим общий множитель .
Этап 3.4.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.4.2
Вынесем множитель из .
Этап 3.4.3
Вынесем множитель из .
Этап 3.4.4
Сократим общий множитель.
Этап 3.4.5
Перепишем это выражение.
Этап 3.5
Вынесем знак минуса перед дробью.
Этап 3.6
Применим свойство дистрибутивности.
Этап 3.7
Умножим на .
Этап 3.8
Сократим общий множитель .
Этап 3.8.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.8.2
Сократим общий множитель.
Этап 3.8.3
Перепишем это выражение.
Этап 4
Этап 4.1
Зададим интеграл на каждой стороне.
Этап 4.2
Проинтегрируем левую часть.
Этап 4.2.1
Разделим дробь на несколько дробей.
Этап 4.2.2
Разделим данный интеграл на несколько интегралов.
Этап 4.2.3
Сократим общий множитель .
Этап 4.2.3.1
Сократим общий множитель.
Этап 4.2.3.2
Разделим на .
Этап 4.2.4
Интеграл по имеет вид .
Этап 4.2.5
Применим правило дифференцирования постоянных функций.
Этап 4.2.6
Упростим.
Этап 4.2.7
Изменим порядок членов.
Этап 4.3
Проинтегрируем правую часть.
Этап 4.3.1
Разделим данный интеграл на несколько интегралов.
Этап 4.3.2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.3
Интеграл по имеет вид .
Этап 4.3.4
Применим правило дифференцирования постоянных функций.
Этап 4.3.5
Упростим.
Этап 4.3.6
Изменим порядок членов.
Этап 4.4
Сгруппируем постоянную интегрирования в правой части как .